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Abstract 

 

This research presents a Network Tasking Order process that collects mission plans, 

network capabilities, and historical records to build a Network Tasking Order (NTO). 

The NTO document directs the form and usage of the network, much like an Air Tasking 

Order (ATO) directs the usage of air power. The NTO process is fleshed out with the 

content and format of the NTO given herein for the first time. Tools such as topology 

control algorithms are then shown through simulation to improve the quality of service of 

the network by finding favorable ways to connect the assets identified during the NTO 

process and to route the information through them, in one case preventing a 15% data 

loss. Furthermore, portions of the network can be hardened against cyber attack through a 

novel approach to polymorphic networking. The NTO process can provide a complete list 

of connections that are possible for a network. By periodically changing those 

connections in use and the routes taken through them, it becomes more difficult for 

adversaries to map the network in preparation for an attack. In the majority of cases, 

network availability to an attacker is reduced by more than 50%. It is also shown how 

existing topology control algorithms can be modified to produce heuristics for 

polymorphic networking. 
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IMPROVING THE QUALITY OF SERVICE AND SECURITY OF MILITARY 

NETWORKS WITH A NETWORK TASKING ORDER PROCESS 

 

I. Introduction 

The Global Information Grid (GIG1) as defined by the Department of Defense 

(DoD) Directive 8100.1 is the “globally interconnected, end-to-end set of information 

capabilities, associated processes, and personnel for collecting, processing, storing, 

disseminating, and managing information on demand to warfighters, policy makers, and 

support personnel” [1:8]. In particular, the GIG includes the military communications 

network. 

This dissertation shows how the employment of a Network Tasking Order (NTO) 

process can solve some fundamental problems of the GIG. Briefly, these problems 

include inappropriate topologies formed by wireless networks, a lack of participant 

awareness of the global structure of the GIG along with the effects of their involvement, 

and the inability of the GIG to predictively react to participant needs and enemy attacks.  

These problems are elaborated on shortly. 

The NTO is envisioned as an analogue to and offspring of the Air Tasking Order 

(ATO), the daily tasking of air missions. At the most basic level, the NTO is a document 

                                                 
1 A list of abbreviations is contained in the prefatory material as an aid to the reader. 
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that directs the day-to-day operation of specific portions of the GIG, and the NTO 

process entails the information flow, tools, and personnel required to generate the NTO. 

The NTO document, in its planning stage (as a pre-NTO), helps expose shortcomings or 

redundancies in the network. Also, the NTO can be useful in the execution stage to help 

quickly recover from unexpected events such as finding new routes for traffic when a 

node fails. 

Many subnetworks of the GIG, especially those in a wartime environment, are 

formed by mobile nodes. Mobile nodes are by necessity wireless, and oftentimes have 

little infrastructure with which to connect in battlefield milieus. Therefore, nodes must 

have the capability to connect directly with each other and form what is termed a Mobile 

Ad-hoc Network (MANET) [2:329]. Some of the advantages of MANETs are that they 

are rapidly deployable and can be self-organizing. Without infrastructure, each node must 

act as a router to ensure information can travel between nodes that are not directly linked. 

Along with the flexibility that MANETs provide, there are also some disadvantages. 

Networks involving mobile nodes can have highly dynamic topologies [2:325]. 

Without careful planning, the topologies that form can suffer from poor quality of service 

(QoS). Links are short-lived and excessive resources are spent establishing new links 

[3:3]. The networks may have bottlenecks, or worse, be disconnected [4:150]. Some 

topologies require data packets to make many hops to travel from a source node to a 

destination node, which leads to excessive delays. The loss or delay of information can 

have dire consequences. At the other extreme, a topology may be highly redundant and 

underutilized. When costs such as battery life, maintenance, or frequency allocation are 
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considered, this is decidedly wasteful. It is in the DoD’s best interest to find a way to 

mitigate these disadvantages as much as possible. The NTO process is such a way. 

In a MANET, individual nodes often make their own decisions on how to connect 

to the network [2:325]. Unfortunately, what may appear to be the best decision for an 

individual node may not be in the best interest of the network as a whole. For instance, 

one particular node may choose to send information through a path that has the fewest 

hops or the strongest signal, but as a result increases congestion at another node. This 

potentially results in delays or dropped packets for higher priority data streams trying to 

route through the same congested node. A congestion control approach such as 

Asynchronous Transfer Mode (ATM) virtual circuits does not work well with highly 

mobile military networks, and the strategies employed by Transmission Control Protocol 

(TCP) make it difficult to guarantee QoS. What is needed is a means to preplan around or 

to prevent congestion rather than reacting to it. The NTO process is that means. 

In DoD GIG Architectural Vision, the current GIG is described as static rather 

than dynamic and incapable of supporting Net-Centric Warfare/Net-Centric Operations 

[5:1]. The target GIG is depicted as a “unified, agile, end-to-end information enterprise 

that is protected, optimized, and responsive to user needs.” Additionally, “operational 

GIG capabilities are continually analyzed and provisioned; configurations are controlled; 

performance is monitored and anticipated; vulnerabilities are mitigated; and resource 

allocations (including spectrum) are dynamically adjusted to optimize the performance 

and security of the GIG and meet specific mission demands and priorities” [5:13]. 
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It is important that users can rely upon the infrastructure of the GIG – even while 

it may be under cyber attack or physical attack. “Redundancy of paths, the ability to 

reallocate bandwidth based on path conditions, the commander’s policies and priorities, 

and automated routing alternatives” are listed as keys to the high availability of this 

infrastructure [5:21]. The NTO process provides those keys. 

The GIG is composed of many parts. Individuals and mechanisms charged with 

network planning need to be, to the greatest extent possible, aware of what composes the 

GIG, where those pieces are, what their capabilities are, and how they are connected or 

communicating, both currently and into the future. Possession of this GIG-awareness can 

allow for tactical integration of assets as another planning variable in the battlefield; not 

unlike logistical considerations such as fuel, ammunition, water, and others used 

currently in operation planning. There are a variety of ways such awareness can be 

leveraged to help glean improved performance out of the equipment being used and to aid 

in protecting that equipment from cyber attack. The NTO process provides this 

awareness. 

The development and application of the NTO process as a means of enhancing 

GIG-awareness entails taking advantage of the highly planned nature of military 

operations. Military missions require careful planning to ensure appropriate levels of 

force, synchronization of effort, minimization of risk, and the deconfliction of taskings, 

airspace, and spectrum. Unlike most MANET research which often relies on random 

mobility models [6:485; 7:257], in military scenarios the GIG can profit from available 
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foreknowledge of the general locations of assets, when they will be there, and the type of 

traffic they will generate.  

The QoS of the network is improved by taking advantage of the information 

collected during the NTO process. Topology control of a MANET involves making the 

decision of how the nodes in the network are to be connected and what routes the traffic 

they generate are to follow. The topology control problem is difficult, particularly when 

directional antennas are used. Nodes must have suitable proximity, correct orientation, 

and compatible interfaces before they can be linked. One of the basic assumptions for 

many topology control algorithms is a priori knowledge of which links are possible, in 

other words, who can directly communicate with whom. The information collated during 

the NTO process can certainly aid in the creation of a matrix indexing this knowledge. 

After procuring the necessary inputs, topology control algorithms try to minimize the cost 

of the network while at the same time attempting to get the most high-value traffic 

through the system. 

The security and availability of the network can be improved by dynamically 

changing the way traffic is routed through the network and perhaps even altering which 

links are included. This creates what is termed a polymorphic network. The goal is to 

protect the network from attack by increasing its resistance to mapping by adversaries. 

The same topology control algorithms used to improve QoS can be modified such that a 

new topology is in some measurable way different than the previous topology. The 

algorithms attempt to satisfy this requirement while at the same time trying to optimize 
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the network. Any spare capacity that is achieved by the topology control algorithms using 

the pre-NTO as an input can contribute in the traffic shaping. 

1.1 Problem Statement 

Is it possible to improve the quality of service and security of military networks 

through the use of a Network Tasking Order process? 

1.2 Hypotheses 

Owing to the highly planned nature of military operations, it is possible to have 

advanced knowledge of conditions needed by network planners. By cataloging this 

information into a pre-NTO, topology control techniques and algorithms can then be 

employed to optimize the network. In addition, by being aware of what links are possible, 

routes and connections can be dynamically altered to strengthen the network against 

cyber attack. 

1.3 Research Objectives 

The following research objectives are achieved for the first time: 

1. The NTO process is developed and described, with examples showcasing 
content and appearance. 

 
2. Scenarios in which the existence of an NTO process can be shown through 

simulation to improve the quality of service of a network are provided. 
 

3. A polymorphic networking algorithm is developed and tested. 

4. The increased resistance of polymorphic networks to cyber attack is 
measured. 
 

Not only are the contents of a pre-NTO identified, but an entire NTO process is 

fleshed out. In particular, the contents and appearance of a finalized NTO document are 
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demonstrated for the first time with an example tracing the NTO from plan, through 

production, to execution. Along the way, it is pointed out where topology control can be 

linked into the process to allow for optimization and improved QoS. It is also shown how 

existing topology control algorithms can be modified in a unique way to produce a 

polymorphic network that is resistant to being mapped by adversaries. 

1.4 Methodology 

The ATO is taken as a primary inspiration and model for the NTO. In addition, 

the ATO provides much of the data required for NTO generation. The ATO process 

follows a well-defined series of steps. Arguments are made that the NTO process be 

performed side-by-side with the ATO process, in the same time frame. Additionally, the 

format and means of dissemination for the NTO are chosen to match those of the ATO. 

Along with planning documents such as the ATO, the compiling of a capabilities 

database and the archiving of historical precedent are shown to be necessary for inputs to 

the NTO. A list of types of information that would be useful to network planners is given. 

It is then described how the planners boost QoS by taking the information (collated in a 

pre-NTO) to perform analysis or to feed as input to topology control algorithms. Another 

option is to boost security by taking the information as input to polymorphic networking 

algorithms. The results of the analyses and algorithms are translated into directives which 

are then published in the NTO. 

Once the NTO process is explained and fleshed out, three scenarios are provided 

to illustrate the potential improvement to QoS that the NTO process can provide. The 

first scenario shows how the increase in GIG-awareness afforded by the NTO process 
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can prevent a locally made networking decision for a lower priority data source from 

adversely affecting the flow of a higher priority source. The second scenario uses the 

foreknowledge of aircraft locations to preplan a route that maximizes throughput and 

minimizes interference and unnecessary work. The third scenario investigates the 

decrease in end-to-end (ETE) delay that having an NTO might provide under light and 

heavy traffic loads for a Combat Search and Rescue mission. In the second and third 

scenarios, security is improved when messages are directed over specific routes rather 

than being broadcast to all neighboring nodes. 

For developing a polymorphic networking algorithm, Erwin’s mixed-integer 

linear programming (MILP) formulation for solving the multi-commodity capacitated 

network design problem (MCNDP) is modified. An extra term is placed into the objective 

function that increases the cost for routing information on an edge over which the 

information was previously routed. In addition, a new function, ∆, is introduced to 

measure the difference between two network topologies2. For testing the algorithm, 89 

different configurations are considered where the number of nodes, the number of 

interface types, and the number of commodities are varied. For each configuration, up to 

10 polymorphisms are generated. The cost of each solution along with its measured ∆ 

distance from the previous solution and the time to solve are tabulated. In addition, the 

metrics of network diameter and average number of hops are kept. 

Finally, to measure the increased resistance of polymorphic networks to cyber 

attack, the average percentage active time (APAT) is defined. The APAT measures the 

percentage of time that an attacker listening on a link would expect to find the link active 
                                                 
2 A list of symbols, such as ∆, is contained in the prefatory material as an aid to the reader. 
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and not idle. In a static network, any active edges are active 100% of the time and 

provide an eavesdropper with uninterrupted access to information. The lower the APAT 

in a dynamically changing network, the less data is likely to be overheard on a random 

edge. In addition to the APAT, each configuration is tested for edges that are active 100% 

of the time. 

1.5 Results 

Once the required inputs and format of the NTO are explained, the NTO process 

and products are illustrated for the first time. An example is introduced that takes a 

hypothetical mission from an ATO, pairs it with data from a capabilities database and 

historical records of similar missions, and collates the information into a pre-NTO for 

analysis. The example continues with network planners determining a course of action 

requiring a specific routing of information. The specific route is translated into a network 

tasking, and the result is shown as it is published in an NTO. 

Three scenarios demonstrate the potential improvement to QoS that the NTO 

process provides. In the first scenario, the high priority source suffered from 3.4518% to 

4.7082% loss of data when the lower priority source was allowed to pick its own route 

without an NTO process. With an NTO process in place, congestion was prevented and 

neither source lost any data. In the second scenario, without an NTO process, 14.44% of 

a traffic flow was lost due to interference and 93.75% of the nodes in the scenario 

received messages intended for a single recipient. With an NTO process, however, 100% 

of the flow reached the destination with only 31.25% of the nodes involved in the 

transfer. ETE delays were slightly longer with an NTO-mandated route, but still within 
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acceptable limits. For the third scenario, ETE delay was found to be about one second 

longer without an NTO under heavy traffic conditions. Under light traffic conditions, 

ETE delay was longer with an NTO, but only by about 0.05 seconds. 

While developing the polymorphic networking algorithm, two errors in Erwin’s 

MILP formulation and implementation were found and corrected. The consequences of 

these errors had been detected by several researchers [8, 9, 10], but until now the source 

was unknown. The new ∆ function for measuring the difference between two network 

topologies is proved to be a semimetric. A large number of test cases were considered for 

testing the algorithm. A full set of solutions for network configurations up to 20 nodes 

was generated. A reduced set for configurations of 25-40 nodes was found due to long 

running times. For 5-20 node configurations, the longest solution time for a single 

polymorphism was about 10.5 hours. Most polymorphism costs stay within 60% of the 

cost of the optimal first solution. The ∆ function indicates that most of the topologies 

generated are unique. For 25-40 node configurations, most polymorphisms still stay 

within 60% of the optimal first solution, with the maximum recorded value of 62.99%. 

In terms of the APAT, for networks of 5-20 nodes, there are clear trends. The 

APAT decreases as the number of interfaces per node increases. As the number of nodes 

in the network or the number of commodities per node increases, the APAT increases. No 

configuration with four interfaces per node had any edges that were active 100% of the 

time. Only 5.28% of configurations with three interfaces per node had edges that were 

active 100% of the time. For two interfaces per node, 35.56% of configurations had at 

least one edge that was 100% active. And for one interface per node, 87.78% of 
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configurations had at least one edge that was 100% active. For 25-40 node 

configurations, the trends in APAT matched those for 5-20 nodes. Implementing 

polymorphic networking can clearly improve security, especially when nodes can 

connect in more than one way. 

1.6 Summary 

This chapter provides a general introduction to the GIG and some of its 

fundamental problems. The concept of an NTO is introduced as a solution to those 

problems. The chapter briefly outlines how the increase in GIG-awareness provided by 

an NTO process may be used to improve the QoS of the GIG through topology control 

algorithms, and explains a way to extend those algorithms to produce more secure 

polymorphic networks. The methodology and results of the dissertation are then 

summarized. Chapter Two (II) introduces the reader to the general areas of Network 

Tasking Orders, the Air Tasking Order process, topology control, and polymorphic 

networking while presenting an overview of other research efforts that are related to the 

problem statement. Chapter Three (III) details the methodology and approach used during 

this endeavor. Chapter Four (IV) describes in depth the analysis and results that have 

been achieved. Chapter Five (V) contains the conclusions and recommendations 

generated from the completed research objectives and analyses. 
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II. Literature Review 

In developing a Network Tasking Order (NTO) process and algorithms for 

generating a robust network, relevant studies and literature focused on the three main 

topics of this research are first examined while presenting an overview of other research 

efforts that are related to the problem statement. First, NTOs are examined as a way of 

providing the information needed to improve the quality of service (QoS) and security of 

the Global Information Grid (GIG) and the means of putting into force these 

improvements. Since the NTO process is closely related to the Air Tasking Order (ATO) 

process, the ATO’s life cycle is then detailed. Next, topology control algorithms are 

discussed as a tool for optimizing the network to provide the aforementioned improved 

QoS to the GIG. Finally, the relatively new domain of polymorphic networking is 

explored with the goal of increased network security in mind. 

2.1 Network Tasking Orders 

Ranne and McKee advocate that United States Strategic Command’s 

(USSTRATCOM) Joint Task Force – Global Network Operations (JTF-GNO) and/or Air 

Force Network Operations (AFNetOps) “conduct concept and prototype development 

with [GIG] Network Operations Tasking Orders (GNTO) as a means for command and 

control of the GIG” [11:1]. These GNTOs may be used “to communicate not only what to 

do and who does it with what assets; but also what to monitor and assess” [11:4]. The 

authors envision three categories of GNTOs [11:5]: 

1. Standing Orders: for persistent operational standards, 



 

13 

2. Cyclical Orders: to communicate planning and resource allocation for specific 
periods of time, similar to an ATO, and 
 

3. Dynamic Orders: through which USSTRATCOM communicates near real-
time direction for security and allocation issues. 

 
In a recent email [12], McKee, President of the National Security Cyberspace 

Institute, indicated that USSTRATCOM leadership liked the idea and is interested in 

command and control of the cyberspace domain. JTF-GNO has implemented a version of 

the GNTO that is network defense focused, but not really integrated with anything. It is 

focused on computer/land networks with “no real thoughts on applicability to air 

networks or a larger cyber perspective.” 

The concept of an NTO has also appeared in Stookey [13], which provides 

“background and data to build a notional battlespace for testing and simulating the use of 

dynamic networks within the [United States] military” [13:58]. Stookey elaborates on the 

necessity of developing an NTO to provide dynamic network routers “a basis for making 

predictive decisions about where given nodes are spatially in a battlespace, what data 

links might be available, the bandwidth or throughput of such links, the bandwidth 

requirements of various data flows, and the priority of the data that might be destined to 

or coming from various nodes” [13:30]. Pecarina [14] pictures an NTO in which a Joint 

Forces Cyber Component Commander “assign[s] weights of effort to different mission 

goals in cyberspace” [14:8]. In addition, he sees the NTO as a means of addressing the 

flip side of the QoS coin mentioned in Chapter One (I). The NTO helps move to a point 

where information that is not needed or that wastes time, bandwidth, and energy is 

blocked to allow critical data to get through [14:10]. 



 

14 

There are already military documents called NTOs. Due to the present efforts to 

establish an Air Force (AF) Cyber Command, organizations and responsibilities are being 

changed on a seemingly regular basis. Prior to August 2009, 8th Air Force (8 AF) 

AFNetOps had the mission to provide total situational awareness to enable effective 

command and control of the AF portion of the GIG ensuring air, space, and cyberspace 

dominance [15]. To accomplish this mission, the commander can issue a Command, 

Control, Communications, and Computer Systems Notice to Airmen (C4 NOTAM); a 

Network Tasking Order (NTO); or a Time Compliance Network Order (TCNO) [16:16]. 

C4 NOTAMs were a process used to disseminate network information to the field and 

sometimes included TCNOs. The NTO directed “the timely flow of information across 

the AF-provisioned portion of the GIG. Within the NTO, operational and scheduled 

events, taskings, and additional information” were presented [16:25]. The AFNetOps 

commander used the NTO to direct AFNetOps. NTOs were released daily and 

compliance was mandatory per AF policy. The TCNO was used by the commander of the 

Air Force Forces - Global Network Operations “to inform responsible AF agencies of 

network and system vulnerabilities, track implementation of countermeasures, and 

comply with JTF-GNO taskings” [16:26]. These various documents were more directed 

towards actions like moving to standard desktop configurations, disallowing thumb drive 

use, or blocking various file extensions at mail relays. See Appendices A and B for C4 

NOTAM and TCNO examples. 

The 624th Operations Center (624 OC) was activated in August 2009 along with a 

new numbered air force, the 24th Air Force (24 AF). The 624 OC’s mission is to 
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“establish, plan, direct, coordinate, assess, command, and control cyber operations and 

capabilities in support of AF and joint requirements” [17]. The 624 OC is 24 AF’s 

command and control operations center, responsible for the “Air Force provisioned 

portion of the GIG for the purpose of Network Operations (NetOps) and Network 

Defense (NetD)” [18]. The 624 OC commander may issue a variety of order types to 

execute that role. Currently, these order types include a Maintenance Tasking Order 

(MTO), a NetOps Tasking Order (NTO), and a TCNO. According to Major Matthew 

Imperial, senior duty officer in the Air Force Network Operations Center, “other orders 

such as the Cyber Control Order (CCO) and the Air Force Cyber Tasking Order (AF 

CTO) will likely be used in the future while some of the other orders will be phased out 

by name and absorbed into one of the remaining orders” [19]. Briefly, MTOs are for 

cyber maintenance actions of a general nature, NTOs are for critical actions aimed at 

defending the GIG, and TCNOs are for routine patching of system vulnerabilities. 

Unofficially, “the AF CTO is an order used to task assigned AF cyber forces to perform 

specific actions” (such as NetOps, NetD, Network Warfare Support, and Network attack 

missions) “at specific time frames in support of AF and joint requirements” [17]. 

Finally, the 50th Network Operations Group (50 NOG) at Shriever Air Force Base 

publishes a daily NTO through the 22nd Space Operations Squadron to assist in command 

and control of the AF Satellite Control Network which includes the Defense Support 

Program, the Navstar Global Positioning System, the Defense Satellite Communications 

System, NATO III, and Milstar. This schedule makes sure the satellite fliers have the 

needed ground antenna resources to perform routine tasks and to perform telemetry and 
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other data transfers [20]. This version of the NTO appears most similar to the product of 

the NTO process proposed herein, but focuses on a much smaller portion of the GIG. 

With several organizations currently using documents called “NTO”, it may be 

advisable to attach a type designation to the name, if implemented, to avoid confusion. 

For example, in the future, the name NTO-A may be used to emphasize the relationship 

the NTO as proposed in this research has with the ATO and to distance itself from the 

NTO documents produced by the 624 OC and the 50 NOG. Hereafter, the other NTOs 

are not mentioned, and the term NTO can be taken without confusion to mean the 

Network Tasking Order as first proposed by Stookey and Pecarina [13; 14]. 

The various documents described above do not address the core idea of the NTO 

process – that the network can be optimized and protected through foreknowledge of 

time, location, activity, and capabilities of the various mobile components of the GIG. 

While the concept of an NTO may not be new, this research bridges three critical gaps. 

First, very little detail is given in [11; 13; 14] regarding what the appearance and contents 

of an NTO should be. Second, there is also little detail concerning how the NTO should 

be created and disseminated. Finally, the premise that an NTO is beneficial to the QoS 

and security of the GIG remains to be tested. 

2.2 The Air Tasking Order Process 

As mentioned in Chapter One (I), the NTO is an analogue to and offspring of the 

ATO, the daily tasking of air missions. Therefore, it is pertinent to detail the ATO’s life 

cycle in order to indicate where the NTO fits in. For convenience and clarity, all 
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definitions are given in terms of a joint environment as opposed to a multinational or pure 

Air Force environment. 

At the highest level, the President and the Secretary of Defense, through the 

Chairman of the Joint Chiefs of Staff, direct the national effort to ensure the national 

strategic objectives and joint operation termination criteria are clearly defined, 

understood, and attainable [21:I-6, I-8]. The strategic objectives, overall end state, and 

defined measures of success (MOS) are interpreted by the Joint Force Commander (JFC) 

and translated into a military strategy [22:4-6]. Joint Publication 1-02 defines JFC as “a 

general term applied to a combatant commander, subunified commander, or joint task 

force commander authorized to exercise combatant command or operational control over 

a joint force” [23:285]. The JFC’s military strategy consists of objectives, phasing, 

military end states, and military MOS [22:4-6]. 

The JFC usually selects a Joint Force Air and Space Component Commander 

(JFACC) who is in charge of the JFC’s overall air interdiction and counterair effort 

[21:II-17, IV-13]. The operational and tactical control assigned to the JFACC is 

established by the JFC [24:9]. The JFACC is responsible for “making recommendations 

on the proper employment of [air forces that are] assigned, attached, and/or made 

available for tasking; planning and coordinating air operations; or accomplishing such 

operational missions as may be assigned” [25:73-74]. To that end, the JFACC considers 

the JFC’s military strategy and develops air objectives and phasing, air tasks, measurable 

end states, and measures of effectiveness for each air task [22:4-6]. 



 

18 

The Joint Air and Space Operations Center (JAOC) is “the operational-level 

command and control (C2) center that provides the [JFACC] with the capability to direct 

and supervise the activities of assigned and attached forces and to monitor the actions of 

both enemy and friendly forces” [22:1-1]. The JFACC receives all air and space 

resources for planning and tasking in the JAOC within the guidance offered by the JFC. 

The basic structure of a JAOC consists of five divisions. Air Force Operational 

Tactics, Techniques, and Procedures (AFOTTP) 2-3.2, Air and Space Operations Center 

describes these five divisions: 

The Strategy Division (SD) concentrates on long-range planning of air, 
space, and information operations to achieve theater objectives by 
developing, refining, disseminating, and assessing the JFACC air and 
space strategy. The Combat Plans Division (CPD) is responsible for near-
term air and space operations planning. The Combat Operations Division 
(COD) is responsible for the execution of the current ATO. The 
Intelligence, Surveillance, and Reconnaissance (ISR) Division is 
responsible for providing the JFACC and JAOC with awareness of 
adversary activity in the battlespace, for coordinating and planning ISR 
operations that assure awareness of adversary status and activity in the 
battlespace, and for developing and maintaining targeting information on 
the adversary. The Air Mobility Division (AMD) plans, coordinates, tasks, 
and executes the air mobility mission. [22:1-4, 1-5] 

The mission of the CPD, in particular, is “to develop detailed plans for air and 

space operations based on JFC and JFACC-approved guidance received through the SD” 

[22:4-1]. The CPD’s preparation of the ATO provides these detailed plans during the air 

and space planning and execution process. Completed ATOs are transmitted by the CPD 

to the COD and units for execution. Typically, the CPD is organized into four core teams 

with specialized tasks: the Targeting Effects Team (TET), the Master Air Attack Plan 

(MAAP) Team, the ATO Production Team, and the C2 Planning Team [22:4-1]. The 
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other JAOC divisions are broken into teams as well, but the focus here is on the CPD. 

See Figure 1 for the basic structure of a JAOC. 

 

Figure 1: Basic structure of a JAOC [22:1-4] 

The daily ATO is the CPD’s primary product during execution of air operations. 

Normally, the CPD works the two ATO periods beyond the current ATO, putting the 

ATO into a three-day cycle of planning, production, and execution [26:IV-5]. AFOTTP 

2-3.2 [22] details the flow of information and intermediate documents involved in 

creating the ATO. A synopsis of that flow is now given. 

To begin, JFACC guidance and apportionment is given to the CPD via the Air 

Operations Directive (AOD) from the SD. The AOD developed by the SD “combines the 

JFACC’s guidance with the desired targeting priorities to detail [at an operational level] 
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how the JFACC wishes the air operation to be conducted for the specified [day]. The 

AOD details what effects are to be undertaken by air operations and the level of effort by 

force elements, but not how to execute them” [27:5-14]. 

Based on the guidance in the AOD, the TET drafts a Joint Integrated Prioritized 

Target List (JIPTL), which must receive JFC/JFACC approval. The purpose of the JIPTL 

is to align targets with objectives. The JIPTL is sent to the Targets and Combat 

Assessment Team in the ISR Division to have each apportioned target weaponeered3. 

After weaponeering, the JIPTL goes to the MAAP Team of the CPD to begin the MAAP 

process. 

During the MAAP process, JFACC weapon systems resources are matched to 

each target. Overall, the CPD is responsible for developing the MAAP, special 

instructions (SPINS), and the ATO. The MAAP and the ATO are obviously created by 

the corresponding CPD teams. SPINS is formed by the ATO Production Team with 

inputs from multiple cells in the JAOC, and is typically included at the end of the ATO. 

Three other important outputs come from the C2 Planning Team: the daily airspace 

control order (ACO), the tactical operations data (TACOPDAT), and the daily 

operational tasking data link (OPTASK LINK) message [22:4-2]. 

The ACO is used to define and establish special purpose airspace (airspace 

control means) for management and control. Examples of types of airspace control means 

are air corridors, air defense areas, reference points, and restricted operations zones. The 

TACOPDAT is used to “permit the joint operational commander to establish air defense 

                                                 
3 Weaponeering is “the process of determining the quantity of a specific type of lethal or nonlethal weapons 
required to achieve a specific level of damage to a given target, considering target vulnerability, weapons 
characteristics and effects, and delivery parameters” [23:579]. 
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and antiair warfare responsibilities in a tactical area and to permit an area commander to 

provide supplementary orders for his area of responsibility” [28]. In particular, the 

TACOPDAT establishes locations and frequencies of ground C2 agencies, combat air 

patrol stations, airborne early warning stations, airborne radio relay stations, air-to-air 

refueling stations, and aircraft handover points. The OPTASK LINK specifies data link 

procedures within a battle group and serves as a list of who can/may talk to whom. It 

contains information such as unit locations, frequencies, duties, and filter plans [22:4-90]. 

ISR collection planning and target planning are combined in the MAAP to 

produce the ATO. After the MAAP process is complete, the ATO data is finally compiled 

into Theater Battle Management Core System (TBMCS), united with any inputs to 

SPINS and the ACO, and distributed electronically to all users [22:1-11]. 

The missions in the ATO can thus be traced back as required to achieve certain 

effects, which in turn are deemed necessary to meet the JFACC’s air objectives. The 

JFACC’s air strategies and objectives are designed to support the JFC’s military strategy 

and objectives, which themselves are intended to support the President’s national 

strategic objectives.  

2.3 Topology Control Algorithms 

2.3.1 Topology Control Defined 

Topology control can refer to different problems depending on the author. Santi 

defines topology control as “the art of coordinating nodes’ decisions regarding their 

transmitting ranges, in order to generate a network with the desired properties (e.g. 

connectivity) while reducing node energy consumption and/or increasing network 
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capacity” [29:30]. Rajaraman defines it as “the problem of computing and maintaining a 

connected topology among the network nodes” [30:60]. In this dissertation, topology 

control refers to making a decision on how to design a network as well as determining the 

routes over which data is to flow. This is closely related to the Network Design Problem 

(NDP) in which some aspect of the network (cost, diameter, etc.) is to be optimized 

[31:627-8]. 

In the context of Mobile Ad-hoc Networks (MANETs), the current set of active 

links forms the topology of the network. There are many constraints that must be satisfied 

when designing a wireless topology. Typically, MANETs utilize omni-directional 

antennas and may communicate with any other node that is within range. However, more 

realistic network designs for Net-Centric Warfare/Net-Centric Operations include 

directional wireless technology such as free space optical (FSO) or directed radio 

frequency devices. A combination of technologies such as these forms a hybrid-MANET 

(H-MANET). Nodes must have compatible interfaces in order to communicate. Also, 

orientation of nodes is critical when directional antennas are used. Bandwidth limitations, 

battery power, and link unreliability due to mobility, weather, interference, or noise must 

also be taken into consideration. To make matters worse, topology control for networks 

containing directional links is known to be an NP-hard problem [32:4084; 33:296-297]. 

2.3.2 Erwin’s Mathematical Problem Definition 

Erwin [34] used mixed-integer linear programming (MILP) to solve for a 

topology by expanding on the simpler uncapacitated NDP as formulated by Ahuja, et al. 

[31:627-8]. Erwin was interested in optimizing the topology of H-MANETs to satisfy the 
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demands and requirements of military users at a minimum (or near-minimum) cost. His 

framework can be termed a Multi-commodity Capacitated NDP (MCNDP). The 

assumptions used for the MCNDP include the following: 

1. The number of nodes in the network is fixed. 

2. Multiple commodities need to be routed on the network. 

3. Each commodity ݇ has a single source node ݏ௞ and a single destination node 
݀௞. Note that the use of ݇ in superscript here does not mean exponentiation. 
 

4. Any edge introduced into the network has a fixed capacity that cannot be 
exceeded. 

 
5. Nodes may have multiple types of interfaces of differing quantities. 

6. There may be multiple edges between two nodes provided each edge 
corresponds to matching interfaces at each node. However, two nodes are 
limited to one connection per type of interface. 
 

7. Edges are bidirectional with equal capacity in both directions. 

8. No edge connects a node to itself. 

9. The number of edges incident to a node cannot exceed the total number of 
interfaces the node has. 
 

The term commodity refers to some collection of information that needs to move 

from a source node to a destination node. In a network with ݊ nodes, there can be up to 

݊ሺ݊ െ 1ሻ possible source-destination pairs. In general, there may be multiple 

commodities between a specified source and destination, each with different service 

requirements. However, Erwin assumed that commodities are grouped together to 

determine a unique commodity for each possible source-destination pair. 

By allowing multiple interfaces, a network can potentially have many more edges 

to choose from. Let ܰ denote the set of nodes in the network (݊ ൌ  the number of ܭ ,(|ܰ|
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commodities to be routed, and ܨ the number of interface types. It is not enough to denote 

an edge in the network by an ordered pair of nodes. For the MCNDP formulation, an 

edge must be specified by an ordered triple ሺ݅, ݆, ݂ሻ where ݅, ݆ א ܰ (݅ ് ݆) and 1 ൑ ݂ ൑  ܨ

is the interface type. Let ܧ be the set of edges chosen for the network. The final solution 

is a network (directed graph) ܩ ൌ ሺܰ,  ሻ with routes assigned to each commodity. Sinceܧ

edges are required to be bidirectional, the directed network graphs are typically drawn as 

undirected graphs with the understanding that each edge actually represents two directed 

edges. 

The setup for MCNDP begins with a potential-adjacency matrix ܣᇱሺܩሻ ൌ ൣܽ௜௝௙
ᇱ ൧ 

(1 ൑ ݅, ݆ ൑ ݊ and 1 ൑ ݂ ൑ Each entry ܽ௜௝௙ .(ܨ
ᇱ  is either 0 or 1. A value of 0 indicates that 

nodes ݅ and ݆ either do not share an interface of type ݂ or that the nodes cannot connect 

for some other reason (orientation, distance, etc.). A value of 1 indicates that nodes ݅ and 

݆ have potential to form a link over interface ݂. Let ݎ௞ be the bandwidth requirement for 

commodity ݇ and let the variable ݔ௜௝௙
௞  be the percentage of the bandwidth requirement for 

commodity ݇ chosen to flow on edge ሺ݅, ݆, ݂ሻ. Again, the appearance of ݇ in superscript 

does not indicate exponentiation, but rather separates the commodity information from 

the edge information contained in the subscript. This notation conforms to the notation 

used by Ahuja, et al. [31:627-8]. Each edge ሺ݅, ݆, ݂ሻ has an associated fixed cost ܿ௜௝௙ for 

inclusion in the network and a usage cost ݒ௜௝௙
௞  for each commodity for routing 100% of 

that commodity over that edge. A binary decision variable ݕ௜௝௙ indicates whether or not 

edge ሺ݅, ݆, ݂ሻ is included in the network design. The number of interfaces of type ݂ 

available at node ݅ is represented by ݑ௜௙. The capacity of edge ሺ݅, ݆, ݂ሻ is indicated by 
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 ௜௝௙. Finally, the expression ݉௞ is a binary decision variable indicating whether or not݌ܽܿ

commodity ݇ must be dropped to achieve a feasible solution. A commodity must be fully 

satisfied. If it is not possible to route 100% of a commodity’s demand, it must be 

dropped. The formulation for the MCNDP now follows. 

Minimize 

 
  (2.1) 

 
subject to 

 
 (2.2) 

 

 (2.3) 

 

(2.4) 

 

(2.5) 

 

(2.6) 

 

(2.7) 

 

(2.8) 

 

(2.9) 

 

(2.10) 

 
 

The objective function (2.1) consists of three terms. The first term adds up the 

usage costs for routing the various commodities on the network, the second term adds up 
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the fixed costs for including each edge, and the final term adds a large penalty value for 

any dropped commodities. The penalty term is included to discourage commodities from 

being dropped merely to reduce cost. Penalties are assigned in such a way (using ݎ௞) that 

low bandwidth commodities are dropped preferentially. The coefficient of 1000 was 

chosen by Erwin [34:28] to be a “very large penalty … so that commodities will be 

dropped only to achieve feasibility.” 

Equations (2.2) and (2.9) simply require ݕ௜௝௙ and ݉௞ to be binary. Inequality (2.3) 

only allows an edge to be selected when its entry in the potential-adjacency matrix is 1. 

Equation (2.4) ensures that links are bidirectional. Inequalities (2.5) and (2.6) force ݔ௜௝௙
௞  

to be between 0 and 1, with positive values allowed only when edge ሺ݅, ݆, ݂ሻ is used. 

Inequality (2.7) makes certain that the capacity of each edge is not exceeded. Inequality 

(2.8) limits the number of edges leaving a node over each interface. Finally, equation 

(2.10) takes care of conservation of flow requirements with special consideration for 

dropped commodities. 

Inequality (2.3) is actually only implied in Erwin’s thesis. This particular 

constraint was not programmed into his implementation. As a result, subsequent research 

found unexpected discrepancies between their results and his [8:40; 9:63-64]. The values 

for ݔ௜௝௙
௞  ௜௝௙, and ݉௞ found using this formulation place the network into an optimalݕ ,

arrangement. Optimal solutions are not unique, in general. Ideally, one may find several 

optimal solutions and rotate among them to create a polymorphic network. Polymorphic 

networking is described in more detail in the next section. 
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2.3.3 Solution Methods for the MCNDP 

A solution to the MCNDP specifies which edges are to be used, which 

commodities are to flow, and what routes are to be used to minimize cost. Erwin looked 

at several approaches to solving this MCNDP formulation. He used a MILP approach 

using a software program called Xpress-MP, two heuristic strategies, and a combination 

MILP approach using degree-constrained Minimum Spanning Trees (dcMST). 

Using a MILP approach for solving the MCNDP proved problematic. The 

problem is intractable for deterministic algorithms because, as the number of nodes 

increases, the problem grows in a non-linear fashion [8:37]. Erwin was unable to obtain a 

solution using any MILP methods (Newton Barrier, Dual Simplex, Primal Simplex, 

Branch-and-Bound) in less than 8 hours for networks with 15 nodes or more. Even 

terminating the MILP search when it finds a feasible solution within 10% of the best 

known lower bound found in the branch-and-bound process took more than 30 minutes 

for networks with more than 20 nodes. 

The two heuristic strategies employed by Erwin involved first finding a dcMST 

(using an integer program) to be a network backbone and then adding edges to form a 

mesh topology. After finding the dcMST, the types and number of unused interfaces are 

counted at each node. The nodes are sorted based on the number of unused interfaces, 

then as many links as possible are added while satisfying degree bounds. Heuristic 1 adds 

links by visiting the nodes in non-decreasing order of the gap between the current degree 

and the degree upper bound. Heuristic 2 adds links in a similar manner, but visits the 

nodes in non-increasing order of the gap between the current degree and the degree upper 
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bound. These heuristics do not consider commodity flows when creating topologies; thus, 

there must be some post-processing performed to generate the routes. To do so, the MILP 

formulation of the MCNDP is used omitting the construction costs in the objective 

function and keeping only the conservation of flow constraint (2.10), the edge capacity 

constraint (2.7), the constraint that percentage flows must be nonnegative (2.6), and the 

binary constraint for ݉௞ (2.9). These two heuristics produce inferior topologies in terms 

of the number of dropped commodities and topology cost. Solutions for networks up to 

30 nodes were able to be found in less than 20 minutes, with the majority of the time 

devoted to the MILP post-processing 

Finally, Erwin also looked at a strategy where a dcMST is found first, then the 

MILP formulation is used with the added constraint that ݕ௜௝௙ ൌ 1 for all ሺ݅, ݆, ݂ሻ in the 

dcMST. This approach allowed for solutions of somewhat larger problems but ends up 

having the same scaling problems as the pure MILP approach. 

Kleeman, et al. [8] approached Erwin’s MCNDP formulation using a 

MultiObjective Evolutionary Algorithm (MOEA) known as the Nondominated Sorting 

Genetic Algorithm. Since the MCNDP is highly constrained, they realized that standard 

genetic operators paired with a random initialization process were not likely to generate 

feasible networks. Thus, care was taken to ensure that chromosomes generated by the 

operators and the initialization process were able to satisfy the constraints. In particular, a 

propagation mutation operator was used for each commodity producing a population with 

80% of the solutions valid. Search space was also reduced by only allowing the ݔ௜௝௙
௞  

variables to take on values that were multiples of 20% with a heavy bias toward 100%. 
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They were surprised that they were able to find better solutions to the 10 node instance of 

the MCNDP than the MILP approach of Erwin. This was surprising because the 

deterministic MILP approach is supposed to produce an optimal solution. They attributed 

the probable cause to the optimization software and the lack of parameters specifying the 

granularity of his commodity flows. Additional problems with Erwin’s code have been 

found; they are discussed in Chapter Three (III). Unfortunately, Kleeman, et al. did not 

indicate the running time for their approach nor did they provide any information on 

networks with more than 10 nodes. 

Garner [9] developed a set of eight heuristics for finding suboptimal solutions to 

the MCNDP in reasonable timeframes. His heuristics are based on mapping the MCNDP 

problem to maximum flow algorithms. Commodities are first sorted and then chosen 

using one of two methods. The first method uses a dynamic programming solution to the 

knapsack problem; the second simply uses a greedy approach to pick the next best 

commodity not already chosen. Every time a new commodity is chosen, it is necessary to 

calculate whether or not the network can accommodate the flow. This is done using one 

of two maximum flow algorithms modified for this task. The Edmonds-Karp (EK) 

algorithm [35:660-3] uses augmenting paths in a residual network. The Pre-Flow Push 

(PFP) algorithm [36:357-67] increases flow on an edge-by-edge basis. For both 

maximum flow algorithms, the attempt is made to route commodities using edges that 

have already been selected. If there is not sufficient capacity, then new edges may be 

added from potential edges found in ܣ′ሺܩሻ. If a commodity cannot be routed through the 

network, then it is dropped and the process continues. For both the EK and PFP 
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algorithms, either a breadth-first search (BFS) or a best-first search (BestFS) is performed 

for edge selection. The eight heuristic approaches are illustrated in Figure 2 below. 

The four heuristics using the dynamic knapsack method were limited by computer 

memory for storing residual networks and results were only generated for networks with 

up to 20 nodes. The greedy heuristics can solve networks up to 35 nodes; however, 

solution quality is not as good and the potential exists for solutions to be trapped at a 

local minimum. Once networks get up to 35 nodes, the sheer amount of data required as 

input exceeds the computer’s memory capacity. Also, run time for the algorithms 

continues to be an issue. Greedy commodity selection with EK routing performs the best 

with run times between 1 and 2 hours for networks with 35 nodes. 

 

Figure 2: Garner's heuristic approaches for solving the MCNDP [9:46] 

The most recent work on the MCNDP was performed by Oimoen [10] on 10-node 

and 15-node networks. Oimoen utilized ant colony optimization (ACO) algorithms to 

solve a static version of the MCNDP, a dynamic modification to automatically adjust to a 

dynamically changing network environment, and a distributed approach to replace a 

centralized solver. Oimoen’s algorithms generated lower average cost solutions than 
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Garner’s four greedy heuristics. The results were comparable with Erwin’s 10-node 

results and better than his 15-node results. Perhaps the most exciting aspect of Oimoen’s 

work is his results with the distributed ACO approach. The distributed algorithms 

produced comparable results in less than 20% of the computation time. 

2.3.4 Similar Topology Control Work 

The work of Milner, et al. [37; 38], predates the MCNDP formulation developed 

by Erwin. They were interested in developing and evaluating low-complexity algorithms 

and heuristics for Optical Wireless (OW) or FSO sensor networks that look at 

characteristics such as received power, link fades, signal to noise ratio, and/or network 

layer delay and choose the best possible topology. The task of reconfiguration requires 

the formation of a biconnected graph or ring topology. They briefly considered a mixed 

integer program formulation, but focused on heuristics due to poor scalability. Similar to 

Erwin’s [34] work with the MCNDP, Milner, et al., were interested in proactively 

adjusting topologies to produce a “better” network, not just attempting to respond to 

degraded topologies. 

The OW networks studied only contain two transceivers per communications 

node or switch which limits the degree of nodes in the network graph to two. The 

formulation they use for their congestion minimization problem is very similar to Erwin’s 

MCNDP formulation. Besides the degree two limitation, the main difference between the 

two formulations is there is no notion of forbidden links and dropped commodities are 

not allowed. There are four classes of heuristics applied to their formulation: single-hop, 

multi-hop, rollout, and branch exchange. 
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For single-hop, the goal is to connect the source and destination of commodities 

with the heaviest traffic by a single-hop. The effectiveness of this heuristic is marginal 

due to the degree constraints, and the effect of multi-hop traffic on congestion in the 

network is not considered. Matching theory can optimally solve this heuristic, but may 

result in a network that is a disconnected set of rings [38:1559]. The main benefit seems 

to be a complexity of ܱሺ݊ଷሻ. 

In the multi-hop heuristic, commodities are considered in nondecreasing 

magnitude of required bandwidth. If a single-hop link is available, that link is chosen. 

Otherwise, the heuristic attempts to create a “least congestion” multi-hop path between 

the source and destination. This is done by considering all possible choices of links and 

choosing the one which yields minimum congestion. The complexity for this approach is 

also ܱሺ݊ଷሻ. 

Rollout heuristics are based on the rollout theory in Markov chains. Here, it is 

used to improvise the ordering of commodities rather than choosing them in the order of 

bandwidth requirement. Using the ordering determined via rollout, either the single-hop 

or multi-hop strategies are used to create paths between sources and destinations. This 

heuristic approach has a complexity of ܱሺ݊ହሻ. 

Finally, the branch exchange is used to consider the result of exchanging two 

existing links with two new links. Given a topology, a new topology is chosen by picking 

the topology with the least congestion that results from a branch exchange. The process is 

repeated until congestion cannot be reduced any more. The complexity for branch 
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exchange is ܱሺ݊ହሻ, but is expected to have average runtimes much less than rollout 

algorithms. 

In their evaluation, Milner, et al., found that rollout with a multi-hop strategy for 

paths produced the best results in terms of congestion. However, multi-hop followed by 

branch exchange produced much quicker results (6 seconds vs. 69 seconds for a 30-node 

network). 

The concepts explored in this research build mainly upon the work of Erwin and 

Garner. Major flaws in the software that both Erwin and Garner wrote have been 

discovered. Erwin’s implementation of his MILP formulation was missing a constraint. 

The code which Garner used suffered from memory leaks, and the data structure he used 

for keeping track of edges did not allow spare capacity on edges to be used by multiple 

commodities. The results they generated cannot be trusted, and thus need to be 

regenerated with corrected software. Details for how the NTO process can link into these 

topology control algorithms to help optimize the GIG are proposed. 

2.4 Polymorphic Networking 

2.4.1 DARPA’s IA Program and the DYNAT Tool 

The Defense Advanced Research Projects Agency (DARPA) initiated the 

Information Assurance (IA) program in December of 1996 in response to exponential 

growth of attacks against military networks [39:viii]. The program ended in 2001, with 

the hope that results established would provide a source of ideas and insight for the 

community of people working to secure the nation’s information systems. 
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Among other things, the IA program sought research in strategic cyber defense, in 

particular, using potentially vulnerable components to build intrusion tolerant systems. 

The overall grand hypothesis of DARPA’s IA program was that it is possible to compose 

trustworthy systems out of less trustworthy components [39:ix]. Five further hypotheses 

were developed to lead experimentation [40:135]: 

1. Layered defenses are an effective means for improving the overall assurance 
of the system. 
 

2. Dynamic modification of the defensive structure is an effective means for 
improving the overall assurance of the system. 

 
3. A methodology can be developed which allows useful prediction of 

risk/system assurance, and constructively supports IA engineering. 
 

4. Automated response mechanisms are at least as effective as human-directed 
response, qualified by reaction time. 

 
5. Automated decision support functions (e.g., situation awareness, course of 

action assessment) can provide significant, effective guidance to human 
operators. 

 
The second hypothesis is of most interest to the research herein. The thought is 

that “if the network has dynamic characteristics, then the intelligence gathered by the 

adversary prior to an attack would be time-limited, thus inhibiting the attack” [41:176]. 

One idea is the use of active network technologies to allow the networks of the future to 

assist in their own protection. To support the second hypothesis, Kewley, et al. [41], 

implemented a dynamic network address translation of the Internet Protocol (IP) address 

and Transmission Control Protocol (TCP)/User Datagram Protocol (UDP) port number 

combinations in packet headers to defeat network-level analysis tools. Their interest was 

in network obfuscation. The scheme is to shift the network every so often in order to keep 
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attackers off balance. Ideally, the shifts cause adversaries to get stuck in their planning 

phase resulting in them giving up before launching an attack or continuing with high risk 

and likelihood of failure. Two tests were conducted. The first was designed to 

demonstrate that it is possible to disrupt an adversary’s ability to sniff (capture and 

analyze) network traffic effectively. The second was to show that improvement of the 

ability of intrusion detection tools to detect an adversary is viable. 

The authors developed a dynamic network address translation (DYNAT) tool that 

translates addressing information in datagram headers prior to routing to receiver server 

enclaves. The translation algorithm is cryptographic, having clients and servers 

configured with initial seed values. A time-based mechanism periodically changes the 

secret key, synchronized by wall-clock time, and thus changes the translation results. 

Received datagrams are reverse-translated and forwarded to the correct servers on a 

private, server-side network interface. No specific encryption algorithm or key exchange 

technique is required. 

For testing, a network topology to model a deployed military campaign-planning 

unit was built in a lab. Traffic was created both by automated traffic generators and 

humans at computers. A team from Sandia National Labs played as the adversary with 

the goals of identifying critical servers through passive sniffing and performing various 

attacks. 

Using this approach, adversary’s scans, denial of service attacks, and TELNET 

hijacking attacks were readily detected and discovery efforts were made substantially 

more difficult. The DYNAT tool the authors developed had the overall effect of “turning 
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the tables” on an adversary. Attackers were put into a reactive mode, as opposed to the 

usual proactive attacking mode. The adversary’s ability to identify both the servers and 

the services they provided was inhibited by the DYNAT approach. Attackers were being 

effectively thwarted early in their footprinting and scanning steps. These steps are now 

defined. 

McClure, et al. [42], explain various mechanisms of attack and how to protect 

against them. They discuss the three essential steps that must be performed before a 

successful hacker can attack: footprinting, scanning, and enumeration. Footprinting 

involves gathering a profile of a target’s Internet, remote access, and intranet/extranet 

presence. Scanning is the process of identifying live hosts and running services. Finally, 

enumeration entails probing identified services more fully for known weaknesses. One 

rather simple step in footprinting is network reconnaissance. Programs such as traceroute4 

can be used to determine network topology and potential access paths into the network. If 

traffic is encrypted, useful information can still be found in headers. Port numbers, for 

instance, can help in the scanning step to identify what services are running. 

2.4.2 New Polymorphic Networking Approach 

This research proposes a novel approach to network obfuscation by dynamically 

changing a network’s topology. Routes in the network can be periodically changed 

(perhaps in conjunction with the IP/TCP shift) so that traffic patterns change and enemies 

have a much more difficult time mapping the network. Any topology that is determined 

by a hacker performing footprinting is short-lived. Additionally, if hackers are 

                                                 
4 Traceroute allows a user to record the sequence of routers a packet traverses from the source host to a 
specified destination. 
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eavesdropping on a particular link, after a short period they may find the link is no longer 

routing the particular traffic they covet or, better yet, the link may no longer be active. 

This approach can be even more effective if there are spare routes or connections 

going into routers that can be switched among (turning this into a network design 

problem). However, one must not degrade the network’s performance beyond acceptable 

parameters in the process. The MILP framework for topology control developed by 

Erwin can be adapted for this purpose. This adaptation requires some means of measuring 

the difference between two network topologies. More specifically, a function must be 

given to quantify how different two topologies for the same set of nodes are from each 

other. Several authors have proposed means for achieving this. 

2.4.3 Network Topology Metrics 

Krishnamurthy, et al. [43], used a function called the Kullback-Leibler (KL) 

distance, also known as the relative entropy. It takes as input a stream of data records 

with two windows maintained over the stream. The windows represent a reference 

pattern and a test pattern. The KL distance determines whether the two windows differ 

significantly. This approach examines only one vertex at a time and does not look at the 

network as a whole. Additionally, the KL distance is not symmetric. That is, the order of 

comparison can result in different values. 

Li, et al. [44], define a normalized metric to differentiate between two graphs 

having the same vertex set and the same degree distribution. The initial step is to sum, 

over all the edges of a network, the products of node degrees of the endpoints of each 

edge. This value is normalized using the maximum and minimum such values for all 
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simple connected graphs with the same degree distribution. Graphs in which high-degree 

nodes connect to high-degree nodes and low-degree nodes connect to low-degree nodes 

tend to have higher values than graphs in which high-degree nodes connect to low-degree 

nodes. Two graphs with similar normalized metric values are deemed to be similar. 

Unfortunately, for polymorphic networks, the degree distribution is likely to change and 

the metric does not apply. Furthermore, the metric does not take into consideration the 

traffic that flows over the edges. For the purposes of polymorphic networking, two 

identical graphs with different flow patterns need to be considered different. 

Harrington [45] points out that degree distribution is not necessarily a unique 

representation of a network. He goes on to recommend the use of a second order degree 

distribution to represent each network in time similar to that in [44]. This distribution is 

the degree product of the edge-paired vertices. Rather than forming the sum, the 

symmetric Rényi cross entropy of the second order degree distributions of two graphs is 

computed. If ࢖ and ࢗ are the second order degree distributions of a network at two 

observation points, the symmetric Rényi cross entropy is given by 

(2.11) 

where ሺ݅, ݆ሻ ranges over all edges in the network and ݓ௜ and ݓ௝ are the degrees of nodes ݅ 

and ݆. If ࢖ ൌ ,࢖଴.ହሺܫ then ,ࢗ ሻࢗ ൌ 0. The larger the difference between ࢖ and ࢗ, the larger 

the value of (2.11). This approach avoids the problems in [43]; the measurement is 

symmetric and looks at the network as a whole. It also does not require a constant degree 

 
 

0.5 2
,

, 2 log
i j i jw w w w

i j

I p q p q



 

39 

distribution, as in [44]. However, the traffic that is flowing over the edges is still not 

taken into account. 

The formula derived in this dissertation is new. It takes both the set of edges being 

used and the traffic that flows over them into consideration. Additionally, this formula is 

shown to satisfy all the conditions for being a metric except for the triangle inequality. 

An original method for generating polymorphic networks using existing topology control 

algorithms is developed and tested. A special metric is investigated to determine the 

potential security increase implementing polymorphism may provide. 

2.5 Summary 

This chapter provided the background and literature review necessary to 

understand the key concepts to be used in this research. In the first section, a backdrop for 

the concept of the NTO was set down. The second section explains the life cycle, from 

strategy to task, of the ATO in the JAOC. In the third section, a discussion on topology 

control was presented. Erwin’s MILP formulation of the MCNDP was given in full 

detail. Additionally, Erwin’s and Garner’s heuristic approaches to the MCNDP were 

explained. The MOEA approach of Kleeman, et al., and the ACO approach of Oimoen 

were also discussed. The section finished with similar work by Milner, et al., on OW or 

FSO sensor networks. The fourth section explained the background of polymorphic 

networking. In particular, the dynamic network address translation approach of Kewley, 

et al., was spelled out. Also, a few approaches to measuring network change were 

described. The next chapter details the methodology and approach used during this 

endeavor.  
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III. Development and Methodology 

The development of a robust Network Tasking Order (NTO) process requires 

meeting four objectives. The first objective is the development and description of the 

NTO process. The NTO process uses the Air Tasking Order (ATO) process as a guide. 

Several illustrations of the steps of the NTO process are crafted to showcase the content 

and appearance of the NTO and its various inputs. The second objective is to produce 

scenarios in which the existence of an NTO process can be shown through simulation to 

improve the quality of service of a network. Three such scenarios are produced. The third 

objective is to devise a polymorphic networking algorithm that takes its inputs from the 

NTO process and strengthens a network against cyber attack. To measure the increased 

resistance of polymorphic networks to cyber attack, the fourth objective is the 

development of the Average Percentage Active Time (APAT) measure. This chapter has 

four sections, one for each research objective. In each section, specific information 

relevant to the objective is specifically discussed. Where appropriate, methodology and 

design of experiments are detailed. Included are approaches that were taken that did not 

prove fruitful. 

3.1 The Network Tasking Order (NTO) Development Process 

The NTO is designed as an analogue to and offspring of the Air Tasking Order 

(ATO), the daily tasking of air missions. The goal of the NTO process is not to generate 

network missions to create effects, but rather to support the air missions in the ATO in 

achieving their designated effects. The NTO process is a means of optimizing the 
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network comprised of the various assets flying the ATO. This means the NTO process 

must be done in unison with, the ATO process. 

The various planning documents involved in the ATO process are available for 

use in creating the NTO. In addition to knowing what nodes will be involved in the 

network, their networking capabilities and expected communication patterns are needed. 

All of these various inputs are collated into a pre-NTO. Analysis of the pre-NTO is 

performed to discover any shortcomings in the network, to identify any optimizations that 

can be carried out, and to strengthen the network against attack. Feedback from the 

analysis can then be used to make necessary changes to the ATO and other planning 

documents before they are published. Once sufficient analysis and feedback cycles have 

been performed, appropriate networking directives are formed and published in a finished 

NTO for units to download. This NTO process is illustrated in Figure 3. 

 

Figure 3: NTO data flow 



 

42 

The three categories of inputs to the pre-NTO are explained in more detail in 

subsections 3.1.1 through 3.1.3. Subsection 3.1.4 discusses the analysis performed on the 

pre-NTO. An illustration of the entire NTO process is given in subsection 3.1.5. Finally, 

other considerations for the NTO process are mentioned in subsection 3.1.6. 

3.1.1 Planning Documents 

A large portion of the data needed for the NTO comes from the ATO itself and its 

Master Air Attack Plan (MAAP) predecessor. Specific data from the ATO of relevance to 

the NTO includes what entities are being tasked, what type of missions they are 

performing, and the time and location of the missions. 

There are many other planning documents such as the Space Tasking Order 

(STO), Tactical Operations Data (TACOPDAT), Operations Tasking Data Link 

(OPTASK LINK), and the Joint Communications Electronics Operating Instruction 

(JCEOI) that contain useful information as well. The STO is another document that is 

developed in parallel with the ATO, as proposed for the NTO. Its primary purpose is for 

tasking space assets with specific missions. Since satellites are used for communication, 

this information is of interest to network designers. The TACOPDAT and OPTASK 

LINK were described in Chapter Two (II). The JCEOI is used for frequency allocation 

and deconfliction. The content and structure of the ATO as well as the STO, 

TACOPDAT, and OPTASK LINK are found in [28], and examples of the message types 

are provided in Appendices C-F. 

To get an idea of the level of detail available to network planners, the structure of 

an ATO is now broken down with a high-level overview of content. All of the missions 
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in the ATO are grouped first by tasked country, then by tasked service, and after that by 

individual tasked units. It makes sense to keep this structure in an NTO so that the units 

that own each network component can easily find the pieces they are responsible for and 

configure them for the planned day. In addition, it is possible that communications may 

need to exist between the asset and its home unit that require planning. 

Figure 4 shows a simplified block diagram of how an ATO is organized. For 

space considerations, only one block on each level is expanded and only three blocks per 

level are shown. In this figure, there are three tasked countries, the first being the United 

States. The United States has three tasked services, one of them being the Air Force. The 

Air Force has three tasked units, among them the 23rd Fighter Squadron. Finally the 23rd 

Fighter Squadron has been given three missions, one of which has mission number 

D123HB. 

 

Figure 4: ATO organization 
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Once the ATO gets down to the individual unit level, all missions that a particular 

unit is responsible for appear sequentially. Within each mission, the number and type of 

aircraft along with call sign and primary configuration are given. The following 

information may also be listed: secondary configuration codes, Link 16 abbreviated call 

sign, Tactical Air Navigation system (TACAN) channel, primary Joint Tactical 

Information Distribution System Unit address, and identification friend or foe/selective 

identification feature (IFF/SIF) mode and code. 

Each mission has a preferred mission type or designation. Mission type does not 

necessarily need to go into the pre-NTO, but it may give a clue as to the types of traffic to 

expect. For example, a combat search and rescue (CSAR) mission has different traffic 

characteristics than air reconnaissance or aerial refueling. The expected quantity and 

burstiness of traffic flows are important measures to include in the pre-NTO. These 

characteristics can be known through historical precedent. The concept of historical 

precedent is addressed more fully in subsection 3.1.3 below. 

Missions in the ATO usually include a route with altitudes and speeds. Routes can 

either be a round trip to a target location with departure/return locations and times, one-

way travel with departure/arrival locations and times, or orbit information with 

departure/return locations and times. In any case, given this information, there is some 

general idea of where an aircraft is going to be and when it will be there. When satellites 

fly over for limited but predictable time spans, the utilization of these resources can be 

planned for ahead of time. For example, a directional antenna can be prepositioned to the 
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expected pointing angle so that it is ready for service when needed. Thus some simplified 

version of this information is included in the pre-NTO. 

Missions in the ATO are also given priorities, and one can generally assume the 

transmissions of a mission have corresponding priority. Thus, it is imperative to carry 

these priorities into the pre-NTO to allow for ranking of traffic flows. By including the 

priority of certain traffic flows, routing agents can use this information to make decisions 

in situations of congestion. The agents can decide to allow the high priority information 

to pass through while dropping or delaying the lower priority information. Other 

alternatives are directing information over different routes, storing information to send at 

times of lower activity, or requesting nodes to slow down or stop transmissions5. 

As can be seen, there is a great deal of information contained in the ATO that can 

be used for network planning purposes. The other planning documents such as the STO, 

TACOPDAT, and OPTASK LINK likewise hold important details. Analysts can know in 

advance which nodes will be involved in the network and where they will be. This is 

clearly an advantage over the use of random mobility models. Since the assets forming 

the nodes are not homogeneous, it is important that network planners know what 

capabilities those assets have. 

3.1.2 The Capabilities Database 

There may be differences in networking capabilities between two assets of the 

same type. For example, the capabilities of an A-10 from one unit may be radically 

different from those of an A-10 from another unit. However, within a single unit the 

                                                 
5 Pecarina’s Hybrid Agent for Network Control (HANC) is designed for this purpose [14:54-71]. 
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differences are usually minimal. A database of baseline capabilities for each asset type by 

unit is needed. Some valuable characteristics to include are: 

 Types of interfaces (free space optical, radio frequency, etc.), 

 Number of interfaces, 

 Functional areas implemented for each data link, 

 Frequencies or channels available, 

 Transmission speed/range, 

 Data forwarding capabilities, 

 Encryption capability, 

 Accepted protocols, 

 Set-up time, and 

 Queue characteristics. 

This capability database needs to be centralized so that when an asset is tasked, 

the networking capabilities of that asset can be automatically available to the network 

planners. There does not appear to be an all-inclusive database containing this 

information currently in existence. Though likely classified, it ought to be fairly 

straightforward to compile such a database. Once constructed, updates from depots, 

program offices, or individual units keep the database current. A good basis for building 

this capabilities database can draw from the Joint Spectrum Center (JSC) Equipment, 

Tactical, and Space (JETS) database. The JETS database contains detailed technical 

information about communications, radar, and electronic warfare equipment as well as 

operational parameters for each subsystem and component [46]. 
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3.1.3 Historical Precedent 

The military usually does an outstanding job of performing after-action reviews 

and cataloging best practices and areas where improvements are needed. The historical 

qualities of various mission types are certainly tabulated in various locations as lessons 

learned, listed as general guidelines, or stored in the collective memory of seasoned 

sergeants. As mentioned above, aspects such as the expected quantity and burstiness of 

traffic flows for various mission types are important measures to be placed into the pre-

NTO. To ensure continuity as personnel change and to increase consistency from NTO to 

NTO, this historical precedent gets recorded in its own database. As time goes by, the 

measurements become more refined. After each ATO/NTO is executed, new 

measurements can be added to the old to extend the usefulness. Periodic reviews ensure 

consistency and accuracy of the data, identify new metrics to record, and eliminate 

unused metrics. This also reflects shifts as conditions change over time and from conflict 

to conflict. Types of metrics to record for each mission type include: 

 Expected communications partners, 

 Type of data transmitted, 

 Bandwidth required (average, burst), 

 Quality of service requirements, and 

 Encryption needs. 

Not only does such documentation help assure that assets receive enough bandwidth for 

their needs, but it also helps identify where bandwidth is over-allocated. This is 

especially important as the finite spectrum available gets more and more utilized and 
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deconfliction becomes more difficult. Additionally, from the network planners’ frame of 

reference, it provides a rough idea of the amount and type of traffic that needs to be 

routed in the network. 

The assets tasked in the planning documents can be cross-referenced with the 

capabilities database. Historical precedent for the various mission types can be pooled. 

The combined information can then be collated into a daily schedule for the network. 

This is a pre-NTO. No network specific taskings have been made yet. Analysis can now 

be performed upon this pre-NTO. 

3.1.4 Analysis of pre-NTO 

By having a plan in place, it becomes more apparent where there are single points 

of failure, gaps in connectivity, or bottlenecks. In such cases, it may be possible to 

change an orbit or add an extra asset. For example, one waypoint of an E-3’s orbit might 

be adjusted slightly to allow periodic high bandwidth line-of-sight (LOS) 

communications to a ground unit that is otherwise plagued with constant low bandwidth 

connections. Another example is the addition of a communications relay mission for an 

unmanned aerial system (UAS) to linger over a certain location to act as a wireless router 

in support of a high priority mission. 

In addition to eliminating deficiencies, analysis can also be used to optimize 

communications or to boost security. For example, topology control algorithms can be 

employed to assign routes that maximize throughput while minimizing the number of 

links utilized. The topology control algorithms discussed in Chapter Two (II) can be run 

using the information found in the pre-NTO. Another example might be adding variations 
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to prevent day to day communication patterns from becoming predictable. The variations 

may be as simple as rotating frequencies, or more involved like implementing 

polymorphism. 

3.1.4 Example Generation of NTO Tasking 

It may be useful at this point to illustrate what a translation of a single mission 

from an ATO into an NTO might look like. The example provided is academic and does 

not represent any real mission. In the ATO, each line of data, or set, is terminated by ‘//’; 

however, due to length it may wrap to fill multiple lines of text. Within a set, fields are 

separated by ‘/’. Fields containing ‘-’ are optional and no data has been entered. Figure 5 

shows a few sets that pertain to a single mission from an example ATO. 

The first three sets detail whom is being tasked in increasing specificity. The first 

set indicates that the tasked country (TSKCNTRY) is the US. The second set designates 

the Air Force (F) as the service being tasked (SVCTASK). The third set specifies the unit 

being tasked (TASKUNIT) and its location. Here, it refers to the 23rd Fighter Squadron 

(23FS) at Spangdahlem Air Base in Germany. The location in this instance is given by 

the International Civil Aviation Organization (ICAO) four character identifier ETAD. 

Location can also be specified by place name or by latitude/longitude. 

TSKCNTRY/US// 
SVCTASK/F// 
TASKUNIT/23FS/ICAO:ETAD// 
AMSNDAT/N/D123HB/-/-/-/SEAD/-/-/DEPLOC:KGZ6/241200ZAPR 
/ARRLOC:KDZ7/241300ZAPR// 
MSNACFT/1/ACTYP:F16CJ/SUPP01/2HARM/-/20001/30111// 
AMSNLOC/-/-/-/210/1// 

Figure 5: Sample ATO mission 
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The fourth set contains aircraft mission data (AMSNDAT) with twelve fields of 

information. The first field is the residual mission indicator. An ‘N’ means that the 

mission is non-residual6. The next field is for the mission number identification, here it is 

D123HB. The third (Air Mobility Command mission number or event number), fourth 

(package identification), and fifth (mission commander) fields have been left blank. Field 

six holds the preferred type or designation for the mission. In this case, it is a Suppression 

Enemy Air Defense (SEAD) mission. Fields seven (secondary mission type) and eight 

(alert status) have been left blank. Field nine is used to specify the departure location of 

the mission if it differs from the location specified in the TASKUNIT set. An ICAO 

identifier, KGZ6, is given for the location. Field ten gives the day-time and month of 

departure, April 24 at 1200 Zulu (241200ZAPR). Field eleven provides the recovery 

location of the mission if other than the location specified in the TASKUNIT set. Again, 

an ICAO identifier, KDZ7, is given for the location. Finally, field twelve gives the day-

time and month of recovery, April 24 at 1300 Zulu (241300ZAPR). 

The fifth set holds individual aircraft mission data (MSNACFT) with seven fields 

of information. The first field gives the number of aircraft as 1. The second field provides 

the type and model of aircraft as an F16CJ Fighting Falcon. The aircraft call sign, 

SUPP01, is placed in field three. In the primary configuration code field, 2HARM 

indicates the aircraft is to be equipped with two AGM-88 high-speed anti-radiation 

missiles. Field five (secondary configuration code) has been left blank. Fields six and 

seven are both for IFF/SIF codes. In field six, 20001 indicates a mode 2 code (personal 

                                                 
6 A non-residual mission falls entirely within a single ATO period. 
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unit identity) with octal value 0001. In field seven, 30111 indicates a mode 3 code 

(normal air traffic control identity) with octal value 0111. 

Finally, in the sixth set, additional mission location (AMSNLOC) information is 

given with five fields. This set provides mission location information for missions which 

have no specific target location, for example orbits or alerts. Fields one (day-time and 

month of start), two (day-time and month of stop), and three (mission location name) are 

left blank. Field four provides the vertical distance in hundreds of feet above mean sea 

level. A value of 210 indicates the mission is to fly at 21,000 feet. The last field is the 

code for the priority assigned to a mission, which in this example is 1. 

Notice that in a few short lines, there is some pretty detailed information about 

where this particular F-16CJ will be and when it will be there. Given the departure and 

recovery locations of the mission, intermediate locations can be interpolated. Similar 

information is given for all other aircraft flying during the same time period. Suppositions 

can also be made regarding with whom this aircraft will be communicating. 

Suppose that a capabilities database contains the following (hypothetical) 

information regarding F-16CJs from the 23rd Fighter Squadron: 

 Equipped with one Improved Data Modem (IDM-302) capable of 16 Kbps 
digital communications over four independent channels accepting AFAPD, 
TACFIRE, IDL, and MTS protocols [47] 

 
 The IDM-302 is interfaced with an AN/ARC-164 Ultra High Frequency 

(UHF) Airborne Radio which receives AM signals at levels between -101 
dBm and +2 dBm and features 1-10 watts AM, 100 watts FM, 25 kHz channel 
spacing over a frequency range of 225.000 to 399.975 MHz, and LOS voice 
[48] 

 
 The aircraft includes an omni-directional UH-408 UHF Blade Antenna with -1 

dB gain over 225-400 MHz and 50 Ohm impedance [49]. 



 

52 

Finally, based on historical records of SEAD missions, an average or expected 

data rate along with a peak data rate can be established. For the sake of the example, 

suppose the average traffic rate is 5 Kbps with bursts up to 15 Kbps. It is also possible to 

predict with whom the F-16CJ will be communicating. There will likely be 

communications between various aircraft in the same strike package. These other aircraft 

are identified in the ATO. Also, there will be communications with an E-3 Sentry 

Airborne Warning and Control System (AWACS) providing situational awareness of the 

battlefield and battle management. The AWACS closest to the F-16CJ during this 

mission can be identified from the ATO. There may also be communications between the 

F-16CJ and its home base and with the Joint Air and Space Operations Center (JAOC). 

All of this information is of interest to analysts who are trying to optimize the 

network and eliminate potential gaps in connectivity or bottlenecks. This information all 

becomes collated into a pre-NTO. The data in the pre-NTO can then be fed into software 

tools such as the topology control algorithms discussed in this dissertation, or other 

programs that may exist or have yet to be created. The pre-NTO may have the appearance 

of Figure 6. 

TSKCNTRY/US// 
SVCTASK/F// 
TASKUNIT/23FS/ICAO:ETAD// 
AMSNDAT/N/D123HB/-/-/-/SEAD/-/-/DEPLOC:KGZ6/241200ZAPR 
/ARRLOC:KDZ7/241300ZAPR// 
MSNACFT/1/ACTYP:F16CJ/SUPP01/2HARM/-/20001/30111// 
AMSNLOC/-/-/-/210/1// 
MODEMDAT/1/TYPE:IDM302// 
RADIODAT/1/TYPE:ARC164// 
IFACEDAT/1/TYPE:UH408// 
EXPCOMM/AVE:5/BURST:15/1// 
COMMLINK/ICAO:ETAD/ICAO:JAOC/CALL:SKYWATCH43// 

Figure 6: Sample pre-NTO mission 
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Notice that the first six sets in Figure 6 are repeated from the ATO. This is 

important information, most of which is of use to analysts. Five new sets have been 

added using the same format as the ATO. The first added set, MODEMDAT, provides 

information on the modem(s) carried by the asset. The first field in this set gives the 

number and the second field gives the type. Here it lists 1 IDM-302 modem. These fields 

can be repeated if there are multiple types of modems. The second and third added sets 

have a very similar format. The RADIODAT set gives the number and type of radio(s) on 

the asset. The IFACEDAT set lists the number and type of interfaces (or antennas) being 

used. It may be necessary to make these sets hierarchical if, for instance, different 

modems are paired with different radios and antennas. These three sets are derived from 

the information from the capabilities database. 

The last two added sets are derived from historical precedent. The EXPCOMM set 

lists information on the expected communications traffic from this asset on this particular 

mission. The first field gives the anticipated average traffic rate in Kbps. The second field 

gives the anticipated maximum traffic rate in Kbps. The final field indicates the priority 

of the communications. In this case, the priority is identical to the mission priority listed 

in the AMSNLOC set of the ATO. This set is also a good place to put fields such as 

encryption requirements, type of traffic (voice, video, telemetry, etc.) being sent, 

protocols being used, and so on. The COMMLINK set lists some of the main communica-

tions partners for the asset. The field in this set is repeated for each expected traffic 

recipient. The labels in the field, ICAO and CALL, specify how the recipient is identified. 

The first two fields in this example give the ICAO identifiers for the F-16CJ’s home 
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station and the JAOC (ICAO:ETAD and ICAO:JAOC). The last field gives the aircraft 

call sign of an AWACS that is to be coordinating the mission (CALL:SKYWATCH43). 

Finally, an example can now be shown of a tasking that is generated and given to 

this particular mission. Suppose that it has been determined that during this mission, the 

F-16CJ must route all traffic destined for the JAOC through a KC-135 tanker with call 

sign FUEL03 in an orbit named BLUE 23 in the vicinity of the mission. Figure 7 shows 

how this tasking may appear. 

TSKCNTRY/US// 
SVCTASK/F// 
TASKUNIT/23FS/ICAO:ETAD// 
TASKNODE/ACTYP:F16CJ/SUPP01// 
1RTEDAT 
/DEST        /START      /STOP       /NHOP        /LOC 
/ICAO:JAOC   /241200ZAPR /241300ZAPR /CALL:FUEL03 /BLUE 23// 

Figure 7: Sample NTO tasking 

Notice that the first three sets in Figure 7 are repeated from the ATO and the 

pre-NTO. These sets narrow down what is being given the tasking. The fourth set, 

TASKNODE, specifies which node in the network is being tasked. Here it is the F16CJ 

with call sign SUPP01. The last three lines form what is known as a columnar set. 

Columnar sets are arranged in vertical columns under an appropriate column heading. 

The first line has the set name, which for columnar sets must begin with a number. Here 

the set is named 1RTEDAT, indicating that the set is used for specifying data routes. The 

second line has the column headers which designate the type of information located in 

each column. The third line contains the information for this set. The information in this 

line is entered so that it falls under the proper column headers. The first column, DEST, 

indicates the final destination for the traffic that is being routed. The final destination 
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here is referenced by the ICAO code for the JAOC (ICAO:JAOC). The next two 

columns, START and STOP, specify the day-time and month span over which this route 

is to be used. Here, the time span corresponds to the full mission duration found in the 

ATO, from 1200 to 1300 Zulu on 24 April. The fourth column, NHOP, indicates the next 

hop for traffic. The KC-135 is referenced using its call sign (CALL:FUEL03). The final 

column, LOC, indicates the location of the next hop. Here, BLUE 23 refers to the 

KC-135’s orbit. Additional columns can be added as needed. For example, channel, 

encryption type, interface, etc. can be included in this set. As many information lines as 

necessary can be used with columnar sets. This set resembles a routing table.  

3.1.5 Other NTO Process Considerations 

The Air Force uses Theater Battle Management Core System (TBMCS) to assist 

in planning and executing ATOs. TBMCS contains two integrated databases that can be 

accessed by the individual squadrons that are being tasked [50]. Each unit may filter an 

ATO to display only the information that is pertinent to its own missions; however, the 

entire ATO is available and can be saved as a text file. As an ATO day progresses, 

certain missions may need to be changed or cancelled and new missions created. These 

changes are published through TBMCS and are available to a unit until its missions are 

flying. Once a mission is in the air, any changes to that mission are simply communicated 

as needed over radio or through text messages. It is entirely possible for an aircraft to be 

flying a significantly different route than was last published in the ATO. If NTOs are 

created in conjunction with the ATO, then it makes sense to employ TBMCS to 

disseminate the NTO and its changes as well. 
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Once a mission is underway, the Joint Tactical Radio System (JTRS) works in 

conjunction with tools such as FalconView and Link 16 to allow pilots to see other 

entities on their missions in a common operating picture. JTRS is a family of software-

programmable tactical radios that provide the warfighter with voice, data, and video 

communications [51]. FalconView is a mapping system that displays various types of 

maps and geographically referenced overlays. In particular, the various waypoints and 

orbits from an ATO can be displayed along with the user’s own flight plan and the 

current positions of other entities in the vicinity. Link 16 is one of the nine waveforms 

that are implemented in JTRS. Link 16 allows for LOS exchange of tactical pictures in 

near real time. 

Using the tools mentioned above, deviations from the ATO and NTO can be 

visualized. If the location of an aircraft reported through Link 16 does not match with the 

expected trajectory displayed in FalconView, then a deviation is occurring. Suppose, for 

instance, that the KC-135 tanker referred to in the NTO tasking of Figure 7 is moved to a 

different orbit. If that change is made prior to 1200 Zulu, then it is conceivable that a 

change to the NTO can be published before the F-16CJ leaves on its SEAD mission. 

Either a new next hop is provided, or the orbit location is updated in the 1RTEDAT set. 

On the other hand, if the F-16CJ begins its mission and does not find the KC-135 where it 

was expected, there may be problems. If it is still in range, the transmissions to the JAOC 

can still be routed through the tanker. If it is not in range, some new route needs to be 

established. Existing route discovery protocols can find this new route, or a request for 
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route assistance can be broadcasted. Researching these various scenarios is outside the 

scope of this dissertation, but makes excellent future research topics. 

3.2 Scenarios Utilizing the NTO Process 

Three scenarios have been devised to illustrate the potential improvement to 

quality of service (QoS) that following the NTO process provides. The first shows how 

the increase in GIG-awareness afforded by the NTO process can prevent a locally made 

networking decision for a lower priority data source from adversely affecting the flow of 

a higher priority surveillance source [52]. The second scenario uses the foreknowledge of 

aircraft locations to preplan a route that maximizes throughput and minimizes 

interference and unnecessary work [53]. The third scenario investigates the decrease in 

end-to-end (ETE) delay that having an NTO might provide under light and heavy traffic 

loads for a Combat Search and Rescue (CSAR) mission [54; 55]. These three scenarios 

are detailed in Chapter Four (IV). 

3.3 Devising and Testing a Polymorphic Networking Algorithm 

Erwin’s mixed-integer linear programming (MILP) formulation for solving the 

multi-commodity capacitated network design problem (MCNDP) has been successfully 

adapted to this purpose. Erwin used an optimization program called Xpress-MP to solve 

the MILP problem using the Newton Barrier method, the Primal Simplex method, and the 

Dual Simplex method. Xpress-MP is part of a suite of mathematical modeling and 

optimization tools used to solve linear, integer, quadratic, non-linear, and stochastic 

programming problems [56]. There are two adaptations needed to solve this problem: 
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1. Make the process periodic, so that after a determinate amount of time, a new 
solution is generated. 
 

2. Introduce a mechanism to encourage new solutions to be measurably different 
than the previous solution. 

 
Maintaining the trappings of Erwin’s formulation assures that the aims of 

minimizing costs while maximizing performance are upheld. An added benefit is that 

Erwin’s formulation has already been implemented and tested, and multiple heuristics for 

solving the problem more quickly have already been developed. The first adaptation is 

relatively simple to implement. The entirety of Erwin’s formulation can be placed into a 

loop with some means of controlling the frequency at which solutions are generated. At 

the end of each loop, the current solution needs to be stored so that the next iteration can 

be compared to it. If necessary, a timer can be employed to generate new solutions on a 

regular (or irregular) basis. For comparison, the DYNAT tool remapping rates used by 

Kewley, et al., were on two-minute and five-minute intervals [41:181]. 

The second adaptation involves defining a means of measuring the change 

between two topologies to establish bounds on how different each new solution is from 

the previous result. Care must be taken that changing the topology does not increase the 

cost or decrease the performance by more than some acceptable amount. The changes 

must not be made haphazardly. Initially, topology control algorithms can place a network 

into an optimal arrangement. Optimal solutions are not unique, in general. Ideally, one 

makes a change to a new topology that is also optimal. Unfortunately, even if multiple 

optimums exist, the difference between two optimums may be too small to be of 

consequence or so large that switching between the solutions throws the network into 
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disarray. The better approach is to find a way to control the extent of the change of the 

network. 

3.3.1 The ∆ Semimetric 

The MILP framework for topology control developed by Erwin for the MCNDP 

is the basis for the dynamically changing topology control algorithms being evolved. 

Therefore, the formula for measuring topological difference is defined using his 

symbology. Let Ω denote the set of all possible solutions to a particular MCNDP. For a 

specific ߱ א Ω, ߱ consists of the set of values chosen for the variables ݔ௜௝௙
௞  .௜௝௙, and ݉௞ݕ ,

Since solutions are to be generated periodically over time, ߱௧ is used to denote a solution 

found at time ݐ. To avoid a surplus of subscripts, the values of the variables for ߱௧ are 

represented as functions of time. The development of a formula to quantify the difference 

between two solutions ߱௧భ
 and ߱௧మ

 is now given. 

Subtracting ݔ௜௝௙
௞ ሺݐଵሻ from ݔ௜௝௙

௞ ሺݐଶሻ measures the difference in the percentage of 

required bandwith for commodity ݇ that flows on edge ሺ݅, ݆, ݂ሻ from solution ߱௧భ
 to 

solution ߱௧మ
. Because an increase in flow on one edge must correspond to a decrease on 

another edge, some of these differences are positive and others are negative. To avoid 

cancellation of terms, the absolute values of the differences are taken. These absolute 

differences are summed over all possible edges in the network to obtain a measure of 

how much the route for a single commodity has changed. Note that two dissimilar 

changes can result in the same measured difference. Also, the measure is zero if and only 

if the route is unchanged. 
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Once these measures are computed for each commodity, the weighted average is 

taken using the bandwidth of each commodity as the weight. This enforces the idea that a 

change made to a large bandwidth commodity is more significant than a similar change 

made to a small bandwidth commodity. This notion is important because the values for 

௜௝௙ݔ
௞  are percentages. For instance, changing the flow of a 100 Kbps commodity from 

50% to 60% over an edge is more consequential than changing the flow of a 10 Kbps 

commodity from 50% to 60% on the same edge. Finally, the weighted average is divided 

by the average number of edges in the network at times ݐଵ and ݐଶ. In this way, a change in 

a small network is more significant than the same change in a large network. Changing 

two edges in a network with 20 edges is more consequential than changing two edges in a 

network with 200 edges. 

Using the notation as described above, define  

 

(3.1) 

 

 
to be the difference between two solutions to the MCNDP formulation found at times ݐଵ 

and ݐଶ. It is now shown that (3.1) satisfies three of the four requirements to qualify as a 

metric or distance function under the assumption that values for ݎ௞ remain constant. This 

is a reasonable assumption, for it ensures that two solutions refer to the same MCNDP 

formulation and hence belong to the same set Ω. 

To qualify as a metric, Δ must be a function from Ω ൈ Ω into Թ that satisfies the 

following conditions: 
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1. Δሺ߱, ߭ሻ ൒ 0 for all ߱, ߭ א Ω. 

2. Δሺ߱, ߭ሻ ൌ 0 if and only if ߱ ൌ ߭. 

3. Δሺ߱, ߭ሻ ൌ Δሺ߭, ߱ሻ for all ߱, ߭ א Ω. 

4. Δሺ߱, ߬ሻ ൑ Δሺ߱, ߭ሻ ൅ Δሺ߭, ߬ሻ for all ߱, ߭, ߬ א Ω. 

The first condition is called the positivity condition; the second, nondegeneracy; 

the third, the symmetry condition; the fourth, the triangle inequality [57:47]. If Δ satisfies 

all conditions except the triangle inequality, ∆ is said to be a semimetric, and Ω is a 

semimetric space (halbmetrischen Raum) [58:115]. 

Clearly, Δ is a function from Ω ൈ Ω into Թ by definition. Since none of the 

variables or constants in the formula for Δ are negative, and the only subtraction occurs 

within absolute value bars, positivity is satisfied. For nondegeneracy, both directions of 

the implication must be shown. Obviously, if ߱௧భ
ൌ ߱௧మ

, then Δ൫߱௧భ
, ߱௧మ

൯ ൌ 0, because 

all of the absolute differences are 0. Contrapositively, assume ߱௧భ
് ߱௧మ

. Then one or 

more of the following must be true: ݉௞ሺݐଵሻ ് ݉௞ሺݐଶሻ for some 1 ൑ ݇ ൑ ଵሻݐ௜௝௙ሺݕ ;ܭ ്

,݅ ଶሻ for someݐ௜௝௙ሺݕ ݆ א ܰ and 1 ൑ ݂ ൑ ௜௝௙ݔ or ;ܨ
௞ ሺݐଵሻ ് ௜௝௙ݔ

௞ ሺݐଶሻ for some ݅, ݆ א ܰ, 

1 ൑ ݂ ൑ and 1 ,ܨ ൑ ݇ ൑ The third case plainly results in ∆൫߱௧భ .ܭ
, ߱௧మ

൯ ് 0 because at 

least one of the absolute differences is nonzero. However, both the first and the second 

case imply the third case. For if ݉௞ሺݐଵሻ ് ݉௞ሺݐଶሻ for some 1 ൑ ݇ ൑  then commodity ,ܭ

݇ is dropped in one solution but not the other. Thus, ݔ௜௝௙
௞  is zero for all edges in one 

solution and nonzero for at least one edge in the other solution. Likewise, if ݕ௜௝௙ሺݐଵሻ ്

,݅ ଶሻ for someݐ௜௝௙ሺݕ ݆ א ܰ and 1 ൑ ݂ ൑ ,then edge ሺ݅ ,ܨ ݆, ݂ሻ is used in one solution but 

not the other. Thus, some commodity ݇ flows on edge ሺ݅, ݆, ݂ሻ in one solution but not the 
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other. Therefore, ݔ௜௝௙
௞ ሺݐଵሻ ് ௜௝௙ݔ

௞ ሺݐଶሻ for this ݇. Symmetry easily follows from the fact 

that |ܽ െ ܾ| ൌ |ܾ െ ܽ| and ܽ ൅ ܾ ൌ ܾ ൅ ܽ for all ܽ, ܾ א Թ (absolute value and addition 

are symmetric). 

The triangle inequality is the one missing property that prevents Δ from being a 

proper metric unless additional assumptions are introduced. A simple counterexample, as 

illustrated in Figure 8, shows that the triangle inequality does not hold for ∆ in general. 

Consider a three node network with nodes labeled 1, 2, and 3. There is a single 

commodity from node 1 to node 2 with a bandwidth requirement of 1 Kbps. Let ߱ א Ω 

be a topology that sends 100% of this commodity directly from node 1 to node 2. Let 

߭ א Ω be a topology that sends 50% of the commodity directly from node 1 to node 2 and 

50% of the commodity from node 1 to node 3 to node 2. Finally, let ߬ א Ω be a topology 

that sends 100% of the commodity from node 1 to node 3 then to node 2. Formula (3.1) 

results in Δሺ߱, ߭ሻ ൌ 0.375, Δሺ߭, ߬ሻ ൌ 0.3, and Δሺ߱, ߬ሻ ൌ 1. However, 1 ح 0.375 ൅ 0.3. 

 

Figure 8: Triangle inequality counterexample for ∆ 

Under certain conditions, it is possible for the triangle inequality to hold. For 

instance, if the average number of edges is assumed to remain constant over time at some 
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value ݕത, then the argument as shown in Figure 9 can be made. An explanation of the steps 

is given in the next paragraph. 

 
Figure 9: Triangle inequality derivation when average number of edges is constant 

Start by considering Δ൫߱௧భ
, ߱௧మ

൯ ൅ Δ൫߱௧మ
, ߱௧య

൯. Replace each Δ with its 

definition. The expressions in the denominator of both fractions for the average number 

of edges can be replaced by ݕത. Since both fractions now have a common denominator, 

they may be added to produce a single fraction. Now the summations in the numerator 
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are combined, and the ݕത in the denominator is replaced with the average number of edges 

at times ݐଵ and ݐଷ. Finally, since the triangle inequality holds for absolute value, replace 

the expression หݔ௜௝௙
௞ ሺݐଶሻ െ ௜௝௙ݔ

௞ ሺݐଵሻห ൅ หݔ௜௝௙
௞ ሺݐଷሻ െ ௜௝௙ݔ

௞ ሺݐଶሻห with หݔ௜௝௙
௞ ሺݐଷሻ െ ௜௝௙ݔ

௞ ሺݐଵሻห by 

introducing the appropriate inequality. This produces an expression that is equivalent to 

Δ൫߱௧భ
, ߱௧య

൯. Thus, Δ൫߱௧భ
, ߱௧మ

൯ ൅ Δ൫߱௧మ
, ߱௧య

൯ ൒ Δ൫߱௧భ
, ߱௧య

൯, as desired. 

With a formula for ∆ established, modifications to Erwin’s formulation can now 

be explained. As mentioned in Chapter Two (II), Kleeman, et al. found that their heuristic 

occasionally returned a better solution than the “optimal” solution found using the MILP 

approach. This suggests that either they or Erwin had made an error. According to 

Kleeman, et al.: 

Since our stochastic method outperformed his solved deterministic 
methods, our results were surprising. After careful review of all objective 
functions and constraints, we found that our implementation was coded 
exactly as it was for Erwin. We determined that Erwin’s black box 
implementation was the probable fault. His optimization algorithms do not 
have any parameters specifying the granularity of his commodity flows. 
His programmed limitations may have made it impossible for his 
deterministic algorithms to find the best solutions. [8:41] 

In order to avoid incorporating the same error into this work, Erwin’s code was 

re-implemented into Xpress-MP one constraint at a time. After each constraint was 

added, networks with known correct solutions were solved. Two errors were found using 

this approach. Occasionally, solutions were produced that routed commodities over edges 

that were specifically set to 0 in the potential-adjacency matrix ܣᇱ. It was discovered that 

there was no constraint to enforce that ݔ௜௝௙
௞  must be 0 whenever ܽ௜௝௙

ᇱ ൌ 0. Thus, the 

constraint that ݔ௜௝௙
௞ ൑ ܽ௜௝௙

ᇱ  for all possible values of ݅, ݆, ݂, and ݇ was added. The second 

error was found when larger input files began to be tested. This error generated 
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topologies that included edges in the design over some of which no commodities were 

routed. Since edges have a fixed cost, it does not make sense to include an edge unless it 

actually needs to be there. This secondary problem stems from the fact that the input files 

Erwin used were randomly generated. Random input files themselves are not a problem, 

if they are internally consistent. Erwin’s input file generator allowed potential-adjacency 

matrices to have ܽ௜௝௙
ᇱ ൌ 1 with ௝ܽ௜௙

ᇱ ൌ 0. Since edges are required to be bidirectional, 

whenever a commodity is routed over ሺ݅, ݆, ݂ሻ, the edge ሺ݆, ݅, ݂ሻ is forced to be included as 

well. Erwin had no constraint requiring ݕ௜௝௙ ൑ ܽ௜௝௙
ᇱ . As a result, solutions were ending up 

more expensive than they were expected to be. Since there is a constraint that ݔ௜௝௙
௞ ൑  ௜௝௙ݕ

for all possible values of ݅, ݆, ݂, and ݇, adding the constraint that ݕ௜௝௙ ൑ ܽ௜௝௙
ᇱ  for all 

possible values of ݅, ݆, ݂, and ݇ fixes both this problem and the previous one as well. This 

additional constraint is reflected as inequality (2.3). There have been no additional errors 

detected. 

With a corrected implementation, two ideas for how to approach modifying the 

algorithm to produce different topologies have been considered. The first method is to 

add new constraints to the MILP. The second technique is to add a penalty to the 

objective function for reusing edges. The first means is cumbersome, fraught with 

disadvantages, and had to be abandoned. In contrast, the second method is elegant and 

produces good results. The added constraints approach is briefly described before the 

penalty approach is given in full detail. 
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3.3.2 The Added Constraints Approach 

When a solution is generated at time ݐଵ, the values for ݔ௜௝௙
௞ ሺݐଵሻ, ݕ௜௝௙ሺݐଵሻ, and 

݉௞ሺݐଵሻ are temporarily saved for comparison to the solution generated during the next 

iteration at time ݐଶ. It is possible to use these saved values as constants in constraints. In 

this way, each iteration is solved with constraints of the same form, but having different 

coefficients. This results in different solutions produced for each iteration. The question 

is what constitutes a meaningful constraint in this situation. 

One natural approach is to use the formula for ∆ as a constraint. Specifically, 

(3.2) 

Here, the variables corresponding to ߱௧భ
 are held constant, leaving only the variables 

corresponding to ߱௧మ
 truly variable. The ∆min on the right-hand side represents some 

minimum difference the new topology being generated must be from the previous 

topology. 

There are several problems that using inequality (3.2) as a constraint introduces. 

First, (3.2) is not linear. If the definition for ∆ contained a single absolute value, it may 

have been possible to split the single non-linear constraint into two linear constraints. 

Unfortunately, that is not possible with this inequality. At best, (3.2) can be made 

differentiable by replacing the absolute differences in ∆ with squared differences. Even 

then, the result is a quadratic program. Quadratic programs can still be solved, but with 

no guarantee of optimality. Additionally, the extra difficulty of solving a quadratic 

program translates into much longer computation time. 

 
1 2

.min,
t t
ω ω  
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The second (and more undesirable) problem is the way in which certain solutions 

can be found to satisfy the new constraint. In the original MILP, there is no constraint 

that specifically forbids routes from containing loops. A loop does not achieve anything 

besides costing extra money and consuming capacity that other commodities may need. 

Since the objective is to minimize cost, loops are naturally avoided. However, the 

addition of (3.2) forces more expensive solutions, and one way to achieve additional 

expense is by adding loops to a route. This defeats the purpose of polymorphic 

networking. An example of this problem is now demonstrated. 

 
Figure 10: 4-node network showing looping problem 

The four-node network illustrated in Figure 10 has nodes represented by circles 

with links shown as lines. When a particular direction is required, an arrowhead is placed 



 

68 

on the line. Figure 10(a) shows all the potential (bidirectional) edges of the network. Each 

edge has a fixed construction cost of 1 unit per direction and a routing cost of 1 

unit/Kbps. Suppose there is a 1 Kbps commodity that needs to be routed from node 1 to 

node 2 and ∆minൌ 0.06ത. The first step is to find a good initial topology. 

As shown in Figure 10(b), the optimal first solution involves routing 100% of the 

commodity directly from node 1 to node 2 (denoted 1→2). The total cost for this solution 

is 3 units (2 units for construction plus 1 unit for routing). Recall that even though traffic 

only flows one direction in this topology, both directions of the edge are included in the 

cost because of constraint (2.4). Due to the construction and routing costs involved, for 

the second solution, it is cheaper to send 10% of the commodity on the loop 1→4→1 

before joining the remaining 90% over the path 1→2 as seen in Figure 10(c) than it is to 

send even a minuscule percentage ݔ over the path 1→4→3→2 with the remainder over 

the path 1→2 as seen in Figure 10(d). The topology in Figure 10(c) has a total cost of 5.2 

units, where just the construction cost for the topology in Figure 10(d) is 8 units. The ∆ 

difference between Figure 10(b) and Figure 10(c) is 0.06ത and between Figure 10(b) and 

Figure 10(d) is 0.8ݔ. Thus, if ݔ ൌ 8. 3ത%, then both Figure 10(c) and Figure 10(d) have 

the same measured ∆ difference from Figure 10(b), but Figure 10(c) is always cheaper. 

Therefore, Figure 10(c) is given as the second solution using the added constraints 

approach. This is definitely an undesirable situation; it does not really alter the traffic 

flow that existed in Figure 10(b) in a useful way. 

Various remedies to eliminate this problem were examined. A simple quadratic 

constraint that prohibits a commodity from flowing both directions on a single edge is 
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possible. A constraint requiring ݔ௜௝௙
௞ · ௝௜௙ݔ

௞ ൌ 0 for all possible values of ݅, ݆, ݂, and ݇ is 

all that is needed. This is an expensive fix on account of the nonlinearity of the constraint 

and because there are a large number of edge/commodity pairs, even for small networks. 

Unfortunately, no such simple means for preventing less trivial, circular loops was found. 

Because of the quadratic constraint and no simple way to avoid having commodities sent 

over loops, the added constraints approach was deemed unsatisfactory. The alternative 

penalty approach is described next. 

3.3.3 The Penalty Approach 

Rather than introducing a new constraint to the MILP as described above, a 

different approach was examined where the routing costs are increased from iteration to 

iteration. This approach adds an extra cost to Erwin’s objective function (2.1). The 

modified objective function is shown in (3.3). The ܾ௜௝௙
௞  term indicates an additional cost 

for sending a commodity across an edge over which it has previously been sent. After 

each iteration, each ܾ௜௝௙
௞  is incremented by the value found for ݔ௜௝௙

௞ . In this way, the edge 

ሺ݅, ݆, ݂ሻ is more costly for commodity ݇ to use in the next iteration, and this encourages a 

new route to be found. The cost does not increase for commodities that were not 

previously routed over ሺ݅, ݆, ݂ሻ. 

The polymorphic network problem (PNP) formulation is thus to periodically 

minimize 
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 (3.4) 

 

 (3.5) 

 

(3.6) 
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where ܾ௜௝௙
௞  is incremented by ݔ௜௝௙

௞  for all possible values of ݅, ݆, ݂, and ݇ after each 

solution is found. 

The additional costs are kept in a separate matrix to allow for fair comparison 

between solutions. When a new solution is found, its cost based on the original price 

scheme can be calculated by subtracting the additional cost. The first solution found is 

optimal. Subsequent solutions are suboptimal or, at best, a different optimal solution, and 

this allows one to see how much extra they cost. The original formula for ∆ is kept to 

measure the topological difference between solutions after they are generated. 
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The portion of the objective function that assigns penalties to dropped 

commodities is kept as it appears in Erwin’s work [34:28]. The coefficient of 1000 is 

sufficiently large for the networks tested in this research. For a network of 40 nodes, the 

longest possible route for a commodity is 39 hops. Assuming an initial routing cost of 1 

unit/hop with an increase of 1 unit/hop/iteration, after ten iterations, a commodity 

contributes at most (39) · (11) = 429 units of cost to the network. It is always cheaper to 

route a commodity (if it fits) than it is to drop the commodity. 

For larger networks, networks with more expensive routing costs, or applications 

that perform more than ten iterations, a more careful choice of penalty coefficient must 

be made. For future research, it is recommended that the 1000 coefficient be replaced 

with a more flexible term to ensure that the penalty for dropping a commodity remains 

more expensive than the cost of routing the commodity. Generalizing the analysis of the 

preceding paragraph, consider a network configuration consisting of ݊ nodes. The longest 

possible route for a commodity is ݊ െ 1 hops. Let ݒ௠௔௫ be the maximum routing cost for 

any commodity over any edge. Finally, let ܮ be the number of polymorphisms to be 

generated. Replacing 1000 with ሺ݊ െ 1ሻ · ሺݒ௠௔௫ ൅  ሻ will keep the penalty sufficientlyܮ

large. If ܮ is not known in advance, then ሺ݊ െ 1ሻ · ሺݒ௠௔௫ ൅ ݈ሻ can be used, where ݈ is the 

number of the polymorphism currently being solved. 

In practice, as more and more iterations are solved, the routing costs involved 

grow linearly. In a 64-bit machine, there is little danger of the costs generating an 

overflow. If this becomes a concern, a scaling factor can be applied to the ܾ௜௝௙
௞  terms. 

However, it is likely that the networking conditions used as an input to the polymorphic 



 

72 

networking algorithm will eventually change. When this occurs, the algorithm will be 

restarted with new inputs and the ܾ௜௝௙
௞  terms reset back to 0. 

In the process of working with the now-abandoned additional constraints 

approach, the choice was made to move the implementation of the PNP formulation from 

Xpress-MP into General Algebraic Modeling System (GAMS). GAMS is a “high-level 

modeling system for mathematical programming and optimization” [59]. GAMS allows 

for representation of a model which it then translates into a form to be solved by various 

solvers such as BDMLP for linear models and LaGO or CONOPT for nonlinear models. 

The original impetus for the switch was GAMS’s ability to handle quadratic constraints. 

See Appendix G for a sample of the GAMS model code used for solving the PNP. 

Appendix H shows the results for a simple network of five nodes, each with four 

interfaces, and five commodities. 

The inputs necessary for the calculations in this formulation include the potential-

adjacency matrix; the source, destination, and bandwidth requirement for all the 

commodities; and both the fixed costs and variable costs for all the possible edges. It is 

important to know how the values of these inputs can be obtained to be placed into a 

network description file for the algorithm. 

In a non-mobile network, the set of potential edges can generally be assumed to 

be constant. That is, the edges already exist. Inclusion in a topology simply amounts to 

whether any traffic is being sent over the edge or whether the edge is kept idle. In this 

case, the fixed cost does not equate to actual construction cost. Nonetheless, the cost is 
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still useful as a means for keeping the number of edges in the topology at a minimum. 

The result is a network with more highly utilized links and fewer underutilized links. 

In mobile networks, the set of potential edges is expected to be in constant flux. It 

is entirely likely that the edges that are considered at the time the calculations begin may 

no longer exist upon completion of the calculation, making it impossible to implement 

the topology. In order for polymorphic networking to work well in a mobile environment, 

there needs to be some means of knowing in advance which nodes will be involved, 

where they will be, and when they will be there. These are exactly the details that the 

NTO process is designed to bring to the forefront. 

The source, destination, and bandwidth requirement for all commodities involved 

is more scrutable. In a fixed network, individual nodes can be set up to send requests to a 

centralized processor responsible for generating the polymorphisms. Each request 

specifies the desired destination and bandwidth required. Similar requests can also 

indicate when a commodity is no longer needed. Another approach, if traffic patterns are 

stable, is to monitor the network to compile a list of who talks to whom and the amount 

of bandwidth utilized. In a military setting, the NTO process is again proposed as a 

means for knowing this type of information in advance. 

The fixed and variable costs can be defined in various ways. The cost need not be 

monetary, but perhaps related to the security of a link or the power required to operate a 

link. If a particular edge is believed to be compromised, its cost can be artificially raised 

to make it less likely to be picked for inclusion in a topology (or it can be removed from 

the potential-adjacency matrix to avoid having it used at all). If a particular interface type 



 

74 

requires more power, or time to establish, the cost of edges using that interface can be 

given higher cost to cause them to be used less frequently. 

For rigorous testing, GAMS needs to be able to run solvers on a large variety of 

network types. The input files have been designed to be as flexible as possible for this 

reason. As a result, even for a small network of five nodes, it can take over an hour to 

create the input files by hand. A file generator has been written that can quickly generate 

the network description files needed as input for the GAMS program. Currently, the file 

generator spawns network characteristics randomly, within prescribed ranges. 

There are many variables that can be set for the input files. To avoid an 

astronomical number of test configurations, the variables are limited to the number of 

nodes, the number of interface types available, and the number of commodities each node 

sends. Networks of 5, 10, 15, 20, 25, 30, 35, and 40 nodes are considered. Each node has 

the same number of interface types with the maximum number of each interface type set 

at 4. Networks with 1, 2, 3, and 4 interface types are examined. Every node is the source 

of 1, 2, or 3 commodities, with the destinations randomly assigned. See Table 1 for the 

enumeration of test configurations. For each choice of number of nodes, there are 12 

combinations of number of commodities and interface types. Thus, there are 96 

configurations to test. Shorthand for a particular configuration is given by #N#C#I, where 

each of the ‘#’ symbols is replaced by a value from Table 1 below. For example, 

10N3C2I denotes the configuration with 10 nodes, 3 commodities per node, and 2 

interface types per node. 
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Table 1: Test configurations for polymorphic networking 

Nodes 5 10 15 20 25 30 35 40 
Commodities 
per Node 

1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 
3 3 3 3 3 3 3 3 

Interface 
Types per 
Node 

1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 
3 3 3 3 3 3 3 3 
4 4 4 4 4 4 4 4 

 

All edges have their construction cost set at 1 unit. The routing cost for every 

edge and every commodity is initially set to 1 unit for 100% flow. The routing costs 

increase from iteration to iteration through the ܾ௜௝௙
௞  parameter. Every commodity has a 

required bandwidth of 10 Kbps, and every edge has a capacity of 100 Kbps. It is not 

desired that any commodities be dropped due to lack of capacity. 

The potential-adjacency matrix is randomly generated with 0’s along the diagonal 

(no edges from a node to itself over any interface). The entries above and below the 

diagonal are symmetric. Symmetry is important because edges are required to be 

bidirectional. If an edge from node ݅ to node ݆ on interface ݂ is available, then so too 

must the edge from node ݆ to node ݅ on interface ݂ be available. Adjacency is set to a 

percentage based on the number on nodes. As the number of nodes ݊ increases, the 

number of possible edges increases with ݊ଶ. To keep the number of edges per node 

consistent across configurations, the adjacency percentages are set at 9 ሾ4ሺ݊ െ 1ሻሿ⁄ . This 

formula was chosen to result in 25% adjacency for a 10-node network. Table 2 shows the 

corresponding percentages across the number of nodes tested. With this approach, the 

average number of potential edges per node is constant with respect to the number of 
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nodes, but increases with respect to the number of interface types. At the percentages 

listed, the average number of potential edges per node is 2.25ܨ, where ܨ is the number of 

interface types. 

Note that the adjacencies are potential. A solution to the PNP includes, in general, 

far fewer edges than what is available. One reason is that nodes have degree limitations. 

Another reason is that a subset of edges may be all that is needed to fully accommodate 

all the commodities that need to be routed. 

Table 2: Adjacency percentage as a function of number of nodes 

# of Nodes Adjacency (%) 
5 56.25 
10 25.00 
15 16.07 
20 11.84 
25 9.38 
30 7.76 
35 6.62 
40 5.77 

 

Since the potential-adjacency matrix and the destinations of commodities are 

randomly generated, multiple input files are used for each configuration so that 

confidence intervals can be determined. For configurations from 5 to 20 nodes, 30 input 

files are used. That is, there are 30 test cases for each configuration. For larger 

configurations, the number of test cases considered is limited due to the extreme time 

required to solve. Each potential-adjacency matrix is tested for connectedness prior to 

running the GAMS program. 

The particular solver chosen for these experiments is CoinCbc 2.2. Out of the 

licensed linear solvers available, CoinCbc 2.2 was able to handle the large number of 
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constraints and variables required, and found optimal solutions in the shortest amount of 

time. For each test case, GAMS is programmed to run CoinCbc through 10 iterations to 

generate 10 polymorphisms. The cost of each solution along with its measured  distance 

from the previous solution and the time to solve are tabulated. In addition, the metrics of 

network diameter and average number of hops are kept. The analyses and results for 

these test cases are found in Chapter Four (IV). 

A sample network with five nodes and two interface types is presented to 

illustrate the results of the penalty approach to polymorphic networking. A network of 

small size is chosen for clarity of explanation. Figure 11 shows the network with the full 

set of potential edges. The nodes are labeled 1 through 5. Solid lines indicate a potential 

connection over interface 1 and dashed lines indicate a potential connection over 

interface 2. The edge adjacencies are randomly generated at 56.25%. Notice that there 

does not exist an edge for both interface types between all possible pairs of nodes. All 

edges have a fixed construction cost of 1 unit and a capacity of 100 Kbps. 

 
Figure 11: 5-node example showing all potential edges in network 
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The set of commodities that must be routed for this network are given in Table 3. 

Each node is the source for one commodity and the destinations are randomly generated. 

Every commodity has a bandwidth requirement of 10 Kbps. For every commodity, the 

cost to send 100% of the required bandwidth across any edge is initially set to 1 unit. 

Table 3: Description of commodities for 5-node example 

Commodity Source Destination Bandwidth
1 1 5 10 Kbps 
2 2 4 10 Kbps 
3 3 5 10 Kbps 
4 4 1 10 Kbps 
5 5 4 10 Kbps 

 

The first four (of ten) polymorphisms generated by GAMS/CoinCbc are shown in 

Figure 12(a)-(d). Note that all edges chosen for these topologies are among the potential 

edges shown in Figure 11. Also, not every potential edge shown in Figure 11 is among 

the edges chosen for these four polymorphisms. 

In Figure 12(a), eight edges are used for a construction cost of 8 units. All 

commodities, save commodity 4, have a single-hop path to follow. Commodity 4 must 

follow two hops – one from node 4 to node 5 and one from node 5 to node 1. Thus, the 

routing cost is 6 units for a total cost of 14 units. Similarly, the topology in Figure 12(b) 

has a construction cost of 8 units. The routing cost for the second topology is a little less 

straightforward. A total of seven hops are taken by the five commodities. However, the 

edge used by commodity 5 is the same edge as in the previous topology. Hence, the 

routing cost on this edge for commodity 5 has increased to 2 units. Therefore, the 

combined routing cost is 8 units, for a total cost of 16 units. Since the increased cost for 

commodity 5 is added artificially to encourage distinct solutions, the extra 1 unit can be 
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subtracted to yield a true cost of 15 units. The cost information for all ten polymorphisms 

is given in Table 4. 

 

  

  

Figure 12: First four polymorphisms for 5-node example 
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Table 4: Cost information for all 10 polymorphisms of 5-node example 

Polymorphism Construction 
Cost 

Routing 
Cost 

Total 
Cost 

True 
Cost 

0 8 6 14 14 
1 8 8 16 15 
2 8 10 18 14 
3 8 10 18 17 
4 8 11 19 17 
5 8 14 22 16 
6 8 15 23 17 
7 8 17 25 16 
8 8 19 27 16 
9 8 19 27 16 

 

As this is a small example, the time required to find each of the ten 

polymorphisms is very short. The mean time is 0.177 seconds, with a minimum of 0.081 

seconds, a maximum of 0.63 seconds, a median of 0.119 seconds, and a standard 

deviation of 0.164 seconds. A plot of the solution times is given in Figure 13. Clearly, 

polymorphism 2 is an outlier. This suggests that the median may be a more telling 

statistic than the mean. 

 

Figure 13: Solution times for 10 polymorphisms of 5-node example 
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Figure 14 is a plot of the median solution times of ten polymorphisms for all 

thirty randomly generated test cases. The average of the median values is 0.122 seconds. 

The network described in Figure 11 is actually case 2 on this plot. 
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Figure 14: Median solution times for 30 cases of 5-node example 

Finally, the measured difference between polymorphisms using ∆ is now given. 

Table 5 lists these measured differences. Polymorphism 0 does not have a previous 

topology to measure against, so its entry is left blank. Note that no polymorphism is 

identical to the previous solution. In fact, perusal of all ten solutions shows them to be all 

distinct for this case. This is not true in general. Depending on the initial adjacency 

matrix, there can be arrangements where a handful of solutions are cycled or where only 

a single solution exists. 

Table 5: Measured topological differences in 5-node example using ∆ formula 

Polymorphism 0 1 2 3 4 5 6 7 8 9 
∆  0.275 0.275 0.375 0.45 0.425 0.425 0.425 0.4 0.4 
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To help make formula (3.1) more clear, the calculation of ∆ for polymorphism 1 

is now given. Since there are five commodities and two interface types, ܭ ൌ 5 and 

ܨ ൌ 2. Also, ݎ௞ ൌ 1 Kbps for ݇ ൌ 1, … ,5. Table 6 lists the nonzero variables ݔ௜௝௙
௞ ሺݐሻ and 

ݐ ሻ forݐ௜௝௙ሺݕ ൌ 0 and ݐ ൌ 1. Since the ݕ௜௝௙ variables are binary, nonzero values must 

equal 1. The values for the ݔ௜௝௙
௞  variables are percentages and must be from the interval 

ሾ0,1ሿ. In this instance, no commodity is being split among multiple paths, so all the 

nonzero values are again equal to 1. In the numerator of formula (3.1), all absolute 

differences are 0 except for those involving the ݔ௜௝௙
௞  in Table 6. Of those, only ݔହସଵ

ହ  

appears both for ݐ ൌ 0 and ݐ ൌ 1. Thus, the numerator of (3.1) evaluates to 11. From 

Table 6, the average number of used edges in the network at ݐ ൌ 0 and ݐ ൌ 1 is 8. 

Therefore, formula (3.1) reduces to 11 ሺ5 · 8ሻ ൌ 0.275⁄ . 

Table 6: Nonzero variables for computing ∆ for polymorphism 1 of 5-node example 

ݐ  ൌ 0 ݐ ൌ 1

Nonzero 
௜௝௙ݔ

௞ ሺݐሻ 
ଵହଵݔ

ଵ ଶସଵݔ ,
ଶ ଷହଶݔ ,

ଷ , 
ସହଵݔ

ସ ହଵଵݔ ,
ସ ହସଵݔ ,

ହ  
ଵସଶݔ

ଵ ସହଵݔ ,
ଵ ଶହଵݔ ,

ଶ , 
ହସଵݔ

ଶ ଷହଵݔ ,
ଷ ସଵଶݔ ,

ସ , 
ହସଵݔ

ହ  

Nonzero 
 ሻݐ௜௝௙ሺݕ

 ,ଷହଶݕ ,ଶସଵݕ ,ଵହଵݕ
 ,ହଵଵݕ ,ସହଵݕ ,ସଶଵݕ
 ହସଵݕ ,ହଷଶݕ

 ,ଷହଵݕ ,ଶହଵݕ ,ଵସଶݕ
 ,ହଶଵݕ ,ସହଵݕ ,ସଵଶݕ
 ହସଵݕ ,ହଷଵݕ

 

3.4 Measuring the Security of Polymorphic Networks 

Because of time and cost limitations, physical networks that can embody the 

polymorphisms generated by the PNP formulation described in the previous section have 

not been built. As a result, live testing of resistance to various cyber-attacks is not yet 

possible. However, there is a measurement that can be made to provide a sense of 
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potential benefit. Consider a static network. Presumably, if an attacker has found an 

active link over which to eavesdrop, that link remains active allowing the attacker to 

gather a continuous stream of data from whatever commodity may be utilizing that link. 

With a polymorphic network, on the other hand, each link may be active during some 

polymorphisms and idle during others. For example, Figure 12 in the previous section 

shows edge ሺ1,5,1ሻ to be active in (a) and (c), but idle in (b) and (d). Hence, an attacker 

listening on this link over this time period can intercept a maximum of 50% of 

commodity 1. In fact, if all ten polymorphisms are examined, the average percentage 

active time (APAT) for the edges of the network in Figure 11 is 33.33% with a standard 

deviation of 7.61%. Looking at all thirty randomly generated test cases, the average 

active time goes down to 33.19% with a standard deviation of 8.73%. In all these cases, 

no edge is active more than 60% of the time. In these calculations, edges that are never 

utilized do not contribute to the average. 

For analysis, each of the test configurations generated for testing the penalty 

approach for the PNP is examined for APAT. An attempt is made to identify trends in 

APAT values with respect to increasing the number of nodes, the number of 

interfaces/node, and the number of commodities/node. In addition to APAT, each 

configuration is also tested for edges that are active 100% of the time. Such an edge 

provides an attacker with a persistent source of data, albeit data that potentially comes 

from different commodities. It is expected that the smaller a network is in terms of 

options for routing a commodity, the greater the potential for edges that must be included 

in all ten polymorphisms. 
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3.5 Summary 

This chapter detailed the methodology and approach used during the course of 

this research. Each of the four research objectives were discussed in turn. First, the NTO 

process was developed and described in the setting of a JAOC. The flow of data for the 

NTO begins with planning documents such as the ATO, historical precedent, and a 

capabilities database. The conglomeration (as pre-NTO) is analyzed with feedback to 

other planning teams, and individual taskings are published in a finalized NTO. An 

example of a mission in the ATO resulting in a corresponding NTO tasking was 

provided. Next, three scenarios whose intent is to show how the existence of an NTO 

process can improve the QoS of the Global Information Grid (GIG) were introduced. 

Afterward, a deterministic approach to the PNP based on Erwin’s MILP formulation for 

the MCNDP was developed. A semimetric was defined to measure the difference 

between network topologies. During development, deficiencies in Erwin’s MCNDP 

formulation were found and corrected. Two approaches to the PNP were described: an 

added constraints approach and a penalty approach. A simple 5-node example was 

presented to illustrate the results of the penalty approach to polymorphic networking. 

Also, the plan for testing the formulation using the GAMS modeling system was 

explained. The chapter concluded with a discussion of how examining the APAT for 

edges in a polymorphic network can give a measure of the increased resistance of a 

network to cyber attack. The next chapter presents analysis and results from the three 

scenarios and the penalty approach for the PNP. 
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IV. Analysis and Results 

This chapter is split into several sections. The first section provides the details of 

the three scenarios introduced in Chapter Three (III) that were designed to show that 

following a Network Tasking Order (NTO) process can improve the quality of service 

(QoS) of the Global Information Grid (GIG). The analysis and results from the 

simulations implementing the scenarios are given. Chapter Three (III) also described a 

novel approach to polymorphic networking. A polymorphic networking problem (PNP) 

formulation using a mixed-integer linear program (MILP) approach was presented. This 

approach has been implemented and tested under a variety of configurations. The figures 

from these tests are also given in the second section of this chapter. The third section 

addresses the security benefits that implementing a polymorphic network provides in 

terms of the Average Percentage Active Time (APAT). 

4.1 NTO Scenarios 

4.1.1 NTO Scenario 1 

The first scenario consists of two individual sources generating information that 

needs to be sent to a common headquarters (HQ). HQ is far enough away that direct 

communication from the two sources is not available, but there is an intermediate node 

that can act as a router. Both sources have a 36 Kbps connection to the router, and the 

router has a 36 Kbps connection to HQ. The router has a first in, first out queue with a 

buffer capacity of 50 packets. Source 1 (S1), an MQ-1 Predator Unmanned Aerial System 

(UAS), produces a high-priority video feed at a rate of 30.6 Kbps over a 30-minute time 

span that falls between the hours of 1400 and 1500. Source 2 (S2), a sensor net, produces 
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a continuous stream of data at a rate of 7.2 Kbps. S2’s data is of lower priority and not 

time-sensitive, as it is collated at HQ and reviewed once daily. In addition to the router, 

there is also an E-3 Sentry Airborne Warning and Control System (AWACS) aircraft 

flying a 30-minute orbit during the hours from 1300 to 1800 in the airspace between S2 

and HQ. This particular AWACS is known to be carrying equipment that allows wireless 

line-of-sight (LOS) networking at a rate of 28.8 Kbps. The orbit is such that it is never in 

LOS of S1. It is within LOS of both S2 and HQ for 10 minutes each, with no overlap in 

these time spans. Thus, the aircraft cannot act as a router. However, the aircraft can be 

used as a data ferry, storing the information that is uploaded from S2 and downloading it 

later to HQ when it is in range. An overhead view of the scenario is given in Figure 15.  

 

 

Figure 15: Scenario 1 overview 
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This scenario is first considered without an NTO process in place for guidance. 

S1’s operators do not have any options for routing the video feed; they must utilize the 

router. S2’s operators have a little more flexibility. Given the choice between sending its 

traffic to the router or to the AWACS, the operators are likely to send their traffic through 

the router over the 36 Kbps link. This seems like a reasonable choice given the larger 

bandwidth of this route and the delays that are associated with data ferrying. It is 

probable that S2’s operators are unaware that there is a 30-minute period where S1 is also 

sending data through the router. Even if S2’s operators were aware of S1’s mission, they 

are not privy to S1’s data path to HQ. Further, they are not aware of the router’s 

capabilities or the bandwidth of its connection to HQ. As a final point, without an NTO, 

the router itself has no way of knowing the relative priorities of messages coming from 

S1 and S2. Even if the router is using a protocol such as Differentiated Services [60], S1 

and S2 have not been directed what forwarding behaviors to put into their packet headers. 

Next, the same scenario is envisioned with an NTO process in place, enhancing 

GIG-awareness. In the planning pre-NTO phase, analysts expose the potential for the 

combined data rates from S1 and S2 to overwhelm the router’s queue. The time span 

from 1400 to 1500 is deemed to be a contention period. At this point, there are multiple 

courses of action available. 

1. Increase the bandwidth on the links through the router. 

2. Deploy a second router. 

3. Turn off the data flow from S2 (neither store nor send) during the contention 
period. 
 

4. Use the AWACS as a data ferry during the contention period. 
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5. Give the router a priority queue and mark the packets from S1 and S2 with 
relative priorities. 
 

Options 1, 2, and 5 are rejected because they require a physical change to or addition of 

equipment. Option 3 is rejected because, even though the data is of lower priority, it is 

not desired to lose the data. Since it is known that the information from S2 is not time-

sensitive, the delay associated with option 4 is tolerable. Also, no changes need to be 

made to the other planning documents. This course of action approval is made at the 

operation level and given as directives to the operators of S2 and of the AWACS through 

the NTO. One directive orders S2 to send transmissions to the AWACS from 1400-1500. 

The second tasking orders the AWACS to receive those transmissions and deliver them 

to HQ. See Figure 16 for example NTO excerpts indicating how these taskings may 

appear. The increase in end-to-end delay for S2 is justified by the increased reliability of 

the overall network and the lower priority of S2’s data. Because the locations of the 

AWACS and S2 are known, this information can be included in the NTO to assist in 

prepositioning of antennas, if necessary. 

TSKCNTRY/US// 
SVCTASK/A// 
TASKUNIT/15AMD/ICAO:KFFO// 
TASKNODE/SNTYP:MSCS/SNET 4// 
1RTEDAT 
/DEST /START  /STOP   /NHOP          /LOC 
/ICAO:HQ01/241400ZAPR/241500ZAPR/CALL:SKYWATCH 26/TRACK12// 
GENTEXT/SKYWATCH 26 TO DATA FERRY// 
SVCTASK/F// 
TASKUNIT/552ACW/ICAO:KNFA// 
TASKNODE/ACTYP:E3/SKYWATCH 26// 
2FRYDAT 
/SOURCE     /LOC   /START     /STOP      /FRYTO    /LOC 
/CALL:SNET 4/BLUE13/241400ZAPR/241500ZAPR/ICAO:HQ01/BLUE23// 

Figure 16: NTO excerpts for Scenario 1 
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This scenario is executed in the open source ns-2 simulator (version 2.29) [61]. 

Traffic is generated with constant bit rate generators using User Datagram Protocol 

(UDP). The data rates at which S1 and S2 send packets can be achieved in many ways by 

adjusting packet size and the interval between packets. One extreme way is to have S1 

send a 3,825-byte packet once per second and for S2 to send a 900-byte packet once per 

second. To make the simulation more realistic, packet sizes of 8 bytes through 64 bytes in 

steps of 8 bytes are considered for both sources. The time interval between packets is 

adjusted accordingly. Random jitter is added to the traffic generators to prevent having 

consistently simultaneous arrivals at the router of packets from the two sources. Because 

of the random nature of the traffic, results are gathered using 30 different random seeds. 

This necessitates 1,920 simulation runs each for the two versions of this scenario (without 

and with the NTO). The various connections are implemented as simplex-links7 with 5 

millisecond (ms) delays and DropTail8 queues (with default buffer size). No noise or 

signal fading is simulated. Only the one-hour contention period from 1400 to 1500 is 

simulated. 

For the scenario with no NTO process in place (S2 using the router), S2 generates 

traffic for an hour, and S1 generates traffic for the 30-minute span from 1410 to 1440. 

For the scenario with an NTO process in place (S2 using the AWACS), the timing is 

more complicated. S2 needs to send 30-minutes worth of data (12.96 Mbits) within a 10-

minute window of opportunity. To allow some time for connections to be established 

between S2 and the AWACS, it is arranged for the data to be sent in only 8 minutes. 

                                                 
7 A simplex-link is a point-to-point connection over which signals flow in only one direction. 
8 DropTail queues employ a first in, first out service discipline and drop-on-overflow buffer management. 
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Consequently, the 12.96 Mbits of information in 8 minutes corresponds to an increased 

rate of 27 Kbps. The worst case for end-to-end delay happens when the LOS contact 

between HQ and the AWACS ends just prior to when the LOS contact between S2 and 

the AWACS begins. This is the situation modeled. S1 generates traffic for the 30-minute 

span from 1410 to 1440. S2 sends traffic to the AWACS in two 8-minute intervals from 

1400 to 1408 and from 1430 to 1438. The AWACS relays the traffic to HQ in two 8-

minute intervals from 1422 to 1430 and from 1452 to 1460. 

The interarrival times (in ms) for packet generation at S1 and S2 for the various 

packet sizes are shown in Table 7. Two rows of interarrival times are given for S2 for the 

different data rates used in the scenario without and with the NTO. The interarrival times 

differ with packet size to keep the data rates constant. 

Table 7: Packet interarrival times for Scenario 1 

 Packet Size (bytes) 
8 16 24 32 40 48 56 64 

S1 interarrival time (ms) 
30.6 Kbps 

2.09 4.18 6.27 8.37 10.46 12.55 14.64 16.73 

S2 interarrival time (ms) 
7.2 Kbps (without NTO) 

8.89 17.78 26.67 35.56 44.44 53.33 62.22 71.11 

S2 interarrival time (ms)  
27 Kbps (with NTO) 

2.37 4.74 7.11 9.48 11.85 14.22 16.59 18.96 

 

The results for Scenario 1 without an NTO process in place are examined first. In 

Table 8, the mean percentages of packets from S1 that get dropped at the router are 

shown. The table is arranged by the size of packets originating from both sources. Cells 

are shaded based upon their value. The higher the percentage, the darker a cell is shaded. 

S1 experiences less loss when packet sizes are relatively similar. S1 suffers the least loss 
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of 3.4518% when S1 packets are 40 bytes and S2 packets are 56 bytes. The largest loss of 

4.7082% occurs when S1 packets are 32 bytes and S2 packets are 8 bytes. 

Table 8: Mean % of S1 packets dropped in Scenario 1 (no NTO) 

 

In Table 9, the mean percentages of packets from S2 that get dropped at the router 

are shown. As before, the table is arranged by size of packets originating from both 

sources, and cells are shaded based upon their value. In contrast to S1, S2 experiences 

more loss when S1 and S2 packet sizes are relatively similar. S2 suffers the least loss of 

2.4988% when S1 packets are 64 bytes and S2 packets are 16 bytes. The largest loss of 

5.1471% occurs when S1 packets are 16 bytes and S2 packets are 24 bytes. 

The confidence intervals (CI) for the mean percentages shown in Table 8 and 

Table 9 are very tight. Figure 17 shows the 95% CI for the mean percentage of S1 

packets dropped at the router when S1 packets are fixed at 56 bytes and packets from S2 

range in size from 8 bytes to 64 bytes. Figure 18 shows the 95% CI for the mean 
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percentage of S2 packets dropped at the router when S2 packets are fixed at 56 bytes and 

packets from S1 range in size from 8 bytes to 64 bytes. These plots are typical of the CI 

for all mixtures of packet sizes. Plots of all CI results can be found in Appendix I. 

Table 9: Mean % of S2 packets dropped in Scenario 1 (no NTO) 

 

Note that for no combination of packet sizes does either source experience an 

acceptable amount of loss. The QoS is degraded significantly for both sources. The high-

priority video feed losses from S1 are especially troubling. The suggested tolerance for 

data loss for high-quality audio-video streaming is below 1%, and for two-way 

interactive audiovisual services it is below 2-3% [62:40]. These tolerances are all 

surpassed for S1’s data stream. 
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Figure 17: 95% CI for mean % of 56-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 18: 95% CI for mean % of 56-B S2 packets dropped in Scenario 1 (no NTO) 
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The User Datagram Protocol used in the simulation does not retransmit lost 

packets. Therefore, it is of interest to see what the total loss from both sources is in terms 

of bytes. Table 10 shows the mean percentages of total bytes lost from both sources at the 

router, broken down by packet sizes. The cells are again shaded based on their value, but 

the range of values is rather narrow. Percentages range from 3.9723% to 4.0116% with a 

trend of higher percentages occurring when packet sizes are small and lower percentages 

occurring when packet sizes are larger. Figure 19 provides a summary of statistics on the 

percentage of total bytes dropped at the router over all 1,920 simulation runs. The overall 

average is a loss of 3.9967% of the total bytes sent, with a very narrow 95% CI of 

3.9947% to 3.9986%. 

Table 10: Mean % of total bytes dropped in Scenario 1 (no NTO) 

 



 

95 

4.124.084.044.003.963.923.883.84

Median

Mean

4.0014.0003.9993.9983.9973.9963.995

1st Quartile 3.9728

Median 3.9992
3rd Quartile 4.0256
Maximum 4.1149

3.9947 3.9986

3.9977 4.0015

0.0413 0.0440

A-Squared 6.65

P-Value < 0.005

Mean 3.9967
StDev 0.0426
Variance 0.0018
Skewness -0.494728

Kurtosis 0.648347
N 1920

Minimum 3.8339

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Summary for % of Total Bytes Dropped

 

Figure 19: Summary statistics for % of total bytes dropped in Scenario 1 (no NTO) 

The results from the simulations run for Scenario 1 with an NTO are very simple. 

No packets were lost from either source, regardless of the mix of packet sizes or random 

seed. Also, all data sent from S2 to the AWACS was subsequently sent from the AWACS 

to HQ. Bear in mind that no noise or signal fading was simulated; however, loss from 

those sources mainly applies to the lower priority S2 data. 

Scenario 1, while simple and intuitive, is realistic and shows how the NTO can 

really make a difference. Keep in mind that the intuitiveness of this scenario is 

misleading. The scenario was described in great detail in Chapter Three (III), including 

an overhead picture of the situation. This description is basically a pre-NTO in narrative 

format. The equipment involved along with their missions, locations, and time periods is 

information that comes from planning documents such as the ATO. The capabilities 

database provides the figures on connection speeds, ferrying ability, and queue capacity. 
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Historical precedent gives the data on communication patterns. All of the information 

needed to understand the scenario is conveniently put together in one place. This makes it 

clear that there is a potential conflict, but in current practice, no such convenience exists. 

4.1.2 NTO Scenario 2 

The second scenario utilizes a derivative of a Combat Search and Rescue (CSAR) 

scenario developed by the MITRE Corporation for testing the suitability of the Joint 

Tactical Radio System (JTRS) Wideband Networking Waveform (WNW) to support 

future operations [63:1-1]. MITRE chose the CSAR scenario as it is “small enough in 

scale to readily model, yet diverse enough in mission types and participants involved to 

provide a realistic test of the WNW abilities” [63:iii]. The MITRE scenario involves 63 

nodes; including fixed, land mobile, and airborne users with a detailed scenario script. 

The derived scenario retains 16 of the nodes, along with their names and location 

information. The nodes were chosen to produce a realistic example involving military 

equipment that can potentially be in a given region over a given time span. While the 

MITRE scenario has all the nodes working on a common mission, the derived scenario 

makes no such qualification. 

The 16 nodes retained for Scenario 2 include 3 KC-135 tankers, 1 F-22, 1 E-3 

AWACS, 1 RC-135V/W Rivet Joint, 1 E-8A Joint Surveillance Target Attack Radar 

System (Joint STARS), 1 A-10, 2 UASs, 1 Navy Battle Group (Navy_BG), 1 HH-60G 

Pave Hawk Rescue Helicopter (R-H), 1 Joint Strike Fighter (JSF), a Wing Operations 

Center (WOC), an Air & Space Operations Center (AOC), and a Joint Search and Rescue 

Center (JSRC). See Figure 20 for an overview of the assets and trajectories as represented 
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in OPNET Modeler 15.0. The octagons symbolize wireless nodes, and the white ovals 

indicate the orbits of the mobile nodes. The dimensions of the region shown measure 

roughly 550 km by 1,350 km. 

 

Figure 20: Scenario 2 overview 

For Scenario 2, the R-H needs to send a constant stream of 1,024-bit packets at 

the rate of 1 packet/sec over a one-hour period to the JSRC. The JSRC is the only entity 

in the scenario that needs to receive this transmission, however the distance between the 

R-H and the JSRC precludes direct communication. Therefore, the messages must be 

passed through intermediate nodes, on possibly unrelated missions, in order to reach the 

JSRC. 

As in Scenario 1, this scenario is split into two cases. The first case corresponds to 

the present situation, where no NTO process is in place to assist in GIG-awareness. The 

second case corresponds to a prospective situation, where an NTO process is in place. 

With the NTO process, advance trajectory information is available. The orbits of 
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pertinent participants can be known beforehand. However, the precise positions within 

those orbits are unknown until the aircraft are actually in the air. 

For case 1, when no advance trajectory information is available, the R-H 

broadcasts its messages with intermediate nodes echoing the broadcast in order to reach 

the JSRC. Since only one traffic flow is modeled, no particular routing algorithms are 

employed. Each node keeps track of packets it has broadcast to avoid rebroadcasting 

packets multiple times. No carrier sensing is performed to avoid collisions or 

interference. 

For case 2, when advance trajectory information is available through an NTO 

process, a specific route can be planned. In general, broadcasting a message meant for a 

single recipient is avoided because it is wasteful of bandwidth and may result in nodes 

receiving many copies of the same packet. In the planning pre-NTO phase, analysts 

determine which assets will be in the correct area when the transmissions need to be 

made. By plotting these assets and their planned orbits onto a map, a picture similar to 

Figure 20 can be generated. The goal is to have each hop bring a packet from the R-H 

closer to the JSRC. Each link needs to be of good quality and the total number of hops is 

minimized. Visual inspection of Figure 20 indicates that the A-10, WOC, Navy_BG, and 

two UASs are not good candidates for intermediate nodes. Using existing tools such as 

Spectrum XXI9, analysts can consider terrain obstacles, distance, and enemy 

eavesdropping abilities to help plan a route. The characteristics of the radio transmitters 

and antennas on the various assets can be taken from the capabilities database and used to 

                                                 
9 SPECTRUM XXI is a “Windows based, automated spectrum management tool that supports operational 
planning as well as near real-time management of radio frequency spectrum with emphasis on assigning 
compatible frequencies and performing spectrum engineering tasks” [64]. 
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predict the received power at various locations in order to estimate the quality of 

transmission. 

 

Figure 21: Example received power (W) from R-H in Scenario 2 

Figure 21 above shows an example, for four aircraft close to the R-H, of power 

received from transmissions originating at the R-H. The received power at these four 

aircraft is sufficiently high for the duration of the transmission to provide good quality 

links. The fluctuation in power received over time is a function of the distance between 

source and destination as the aircraft navigate their respective orbits. These graphs show 
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only one pattern determined by the relative starting positions within the orbits of the 

various aircraft. A minimum power received level can be calculated based on the 

maximum expected distance between pairs of aircraft. Received power at KC-135_2 is 

not shown in Figure 21 because at the far ends of their orbits, R-H and KC-135_2 are not 

in range of each other. The received power at Joint_STARS is also not shown because of 

its orbit’s similarity to the orbit of Rivet_Joint. 

Using a methodology such as the above, analysts determine that the best route for 

packets is R-H → AWACS → KC-135_2 → KC-135_1 → JSRC. Accordingly, each of 

these aircraft is given a tasking in the NTO to implement this route. Flooding the network 

can be kept as a backup option in case one of the intermediate aircraft is unable to 

complete its mission. 

Both cases of this scenario are executed in OPNET Modeler, version 15.0.A PL1. 

Every node in this scenario except for the JSRC and the R-H has the same general node 

model design. Each node is assigned10 a minimum frequency as listed below in Table 11. 

The node model is designed to receive transmissions at one of these frequencies and to 

echo on either all other frequencies (for case 1) or on one specified frequency (for case 

2). The node model for the JSRC only needs to receive transmissions, so no radio 

transmitters are included in its design. The node model for the R-H includes a simple 

source generator and no radio receiver. A more detailed description of the node models 

follows. 

 

                                                 
10 In practice, frequency assignments are contained in the Joint Communications Electronics Operating 
Instruction (JCEOI) created by frequency managers in the JAOC. 
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Table 11: Frequency assignments for nodes in Scenario 2 

Node name Assigned Frequency (MHz) 
A-10 300 
AOC 320 

AWACS 340 
F-22 360 
JSF 380 

JSRC 400 
Joint_STARS 420 

KC-135_1 440 
KC-135_2 460 
KC-135_3 480 
Navy_BG 500 

R-H 520 
Rivet_Joint 540 

UAS_1 560 
UAS_2 580 
WOC 600 

 

The node model shown below in Figure 22 is for KC-135_2, but represents the 

general design for all nodes except for the R-H and JSRC. Icons a_0 and a_1 represent 

isotropic antennas with a 50 dB gain in all directions. Icon rr_0 is a radio receiver with a 

data rate of 1,024 bps and a bandwidth of 10 kHz. The minimum frequency for rr_0 is set 

using the values in Table 11. The proc icon is a processor that examines each incoming 

packet. If the packet has been seen before, the packet is discarded. If the packet is new, it 

continues through to q_0. Icon q_0 represents a queue with a first in, first out service 

discipline. The queue acts as its own server with a service rate of 9,600 bps. For case 1, 

q_0 makes 14 copies each packet and sends the resulting 15 packets out to the radio 

transmitters. For case 2, q_0 simply sends each packet to the radio transmitter 

corresponding to the next hop on its route. The icons rt_0 through rt_15 are radio 

transmitters. Each transmitter is set to a different minimum frequency as listed in Table 
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11. Since it is not necessary for a node to transmit messages to itself, the node model 

omits the corresponding transmitter. For example, KC-135_2 is the ninth entry in Table 

11, thus the ninth transmitter, rt_8, is not shown in Figure 22. Each transmitter has a data 

rate of 1,024 bps, a bandwidth of 10 kHz, and a transmission power of 1,000 Watts (W). 

 

Figure 22: General node model for Scenario 2 
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Figure 23: Node model for the R-H in Scenario 2 

The node model for the R-H is shown above in Figure 23. The icons rt_0 through 

rt_15 and icon a_1 are defined exactly as in the general node model. The source icon 

represents a simple source processor that generates 1,024-bit packets with a constant 

interarrival time of 1 second. The source processor performs packet generation for a one-

hour time span during the simulation. The proc icon is a processor that gives each packet 
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a unique sequence number. The sequence number allows any node that receives a packet 

to know whether or not the packet has been rebroadcast before or not. For case 1, proc 

makes 14 copies of each packet and sends the resulting 15 packets out to the radio 

transmitters. For case 2, proc simply sends each packet to rt_2, the radio transmitter set to 

the minimum frequency for the AWACS. Since the R-H is the source node, there is no 

need for its node model to have a radio receiver or receiving antenna. 

The node model for the JSRC is shown below in Figure 24. The icons a_0, rr_0, 

proc, and q_0 are defined exactly as in the general node model. The sink icon represents a 

sink processor. Since the JSRC is the destination node, there is no need for its node 

model to have radio transmitters or transmitting antenna. 

 

Figure 24: Node model for the JSRC in Scenario 2 

The network metrics of end-to-end delay in seconds and traffic received in 

packets/sec are measured at the sink in the JSRC. Received power in W and throughput 

in packets/sec are measured at the radio receiver rr_0 in all models. The simulation is run 

for a duration of one hour, starting at 0 seconds and ending at 3,600 seconds. The random 

seed value is set to 100. 

The results for Scenario 2 without an NTO process in place are examined first. In 

Figure 25, a graph of the received power (in W) for the radio receiver at the JSRC is 

given. The majority of the power received at the JSRC originates from the AOC, which, 

like the JSRC, is a fixed node. The fact that both the JSRC and the AOC are fixed 
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accounts for the horizontal portions of the graph. The changes in power level can be 

explained by interference during periods where aircraft such as the KC-135_1 and 

KC-135_2 are in range of the JSRC. 

 

Figure 25: Received Power (W) at JSRC rr_0 in Scenario 2 (no NTO) 

In Figure 26, the throughput in packets/sec for the radio receiver at the JSRC is 

shown. There is a short period around 2300 seconds and a longer period after 3200 

seconds where interference does not allow any packets to be received. Even though the 

R-H is only producing packets at a rate of 1 packet/sec, the JSRC receives packets at a 

higher rate for the majority of the simulation. Since the network is being flooded in case 

1, a packet may be received from multiple sources at the same time. Alternatively, an 

earlier packet that was routed through more hops may arrive at the same time as a later 

packet that went through a shorter route. In the node model for the JSRC, the radio 

receiver (icon rr_0) is placed before the processor (icon proc) that destroys packets that 
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have already been received. The next figure shows the throughput of unique packets at 

the sink processor of the JSRC. 

 

Figure 26: Throughput (packets/sec) at JSRC rr_0 in Scenario 2 (no NTO) 

Once duplicate packets are destroyed, the surviving packets move on to the sink 

processor. Figure 27 below shows the rate in packets/sec at which traffic is received at 

the sink in the JSRC. The periods where no packets are received correspond to the same 

periods of zero throughput in Figure 26 above. However, the excess throughput at the 

radio receiver is reduced to the expected 1 packet/sec at the sink. Since there are some 

periods where no packets are received, it is relevant to find out what percentage of the 

packets sent from the R-H actually made it to the JSRC. In addition, it is interesting to 

determine how many packets were destroyed at the JSRC as well as at all of the other 

nodes in the network. These results are discussed next. 
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Figure 27: Traffic Received (packets/sec) at JSRC sink in Scenario 2 (no NTO) 

Table 12 lists packet statistics for all of the nodes in Scenario 2. The first column 

lists the node names. The second column indicates how many duplicate packets were 

destroyed before being retransmitted. The third column lists how many unique packets 

were retransmitted. The fourth column catalogs the number of unique packets received as 

a percentage of the total number possible. As the source for the packets, the R-H creates 

3,600 packets in a one-hour time frame. Without a radio receiver in its node model, the 

R-H neither receives nor destroys any packets. At the destination, the JSRC destroys 

2,803 duplicate packets. The JSRC’s node model does not include any radio transmitters, 

so the JSRC does not forward any packets. Of the 3,600 packets sent, 3,080 packets 

arrived at the final destination. That is, about 85.56% of the packets from the R-H were 

correctly received by the JSRC. Even though only the JSRC needed the information 

contained in the packets, every node received packets from the R-H except for the 

Navy_BG, which was out of range during the simulated time span. Hence, 15 out of 16 
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(or 93.75%) of the nodes in the scenario were involved. Of the nodes that received 

packets, only the WOC did not receive any duplicates. A total of 36,436 duplicate 

packets were destroyed at 13 nodes, averaging just over 2,800 duplicate packets per node. 

Thus, on average, these 13 nodes received about 77.85% more packets than required for a 

complete set. Perhaps the worst case is the KC-135_2 which only received 3,174 of the 

3,600 unique packets (88.17%), but destroyed 4,498 duplicate packets. Those 4,498 

packets destroyed plus the 3,174 packets that were forwarded equate to the KC-135_2 

performing about 2.13 times the amount of work performed by the R-H. The 

Rivet_Joint’s work performed is roughly 2.37 times the R-H’s, but at least the 

Rivet_Joint was able to forward 100% of the original message. 

Table 12: Packet statistics for nodes in Scenario 2 (no NTO) 

Node 
Packets 

Destroyed 
Packets 

Forwarded 
% Received 

A-10 771 3600 100 
AOC 2249 2249 62.47 

AWACS 3623 3600 100 
F-22 3678 3600 100 
JSF 2249 3600 100 

JSRC 2803 N/A 85.56 
Joint_STARS 4808 3600 100 

KC-135_1 1799 2249 62.47 
KC-135_2 4498 3174 88.17 
KC-135_3 3810 3600 100 
Navy_BG 0 0 0 

R-H N/A 3600 N/A 
Rivet_Joint 4919 3600 100 

UAS_1 370 3600 100 
UAS_2 859 3600 100 
WOC 0 1799 49.97 
[Total] 36436 41871  
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In Figure 28, the end-to-end (ETE) delay in seconds is shown. The range of 

values is pretty small. The delay does not significantly change during the simulation, 

except for after 3,200 seconds, when the reception at the JSRC drops to zero. This graph 

only shows the ETE delay for those packets that made it all the way to the JSRC’s sink 

processor. The destroyed duplicate packets and the absent packets are not included. The 

average ETE delay for the 3,080 packets that reached the sink is approximately 0.2140 

seconds. 

 

Figure 28: ETE Delay (sec) at JSRC sink in Scenario 2 (no NTO) 

The results for Scenario 2 with an NTO process in place are examined next. In 

Figure 29, a graph of the received power (in W) for the radio receiver at the JSRC is 
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averages the received power from each source to obtain a combined received power at a 

given radio receiver. 

 

Figure 29: Received Power (W) at JSRC rr_0 in Scenario 2 (with NTO) 

 

Figure 30: Throughput (packets/sec) at JSRC rr_0 in Scenario 2 (with NTO) 
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packets from the previous hop’s transmitter, the throughput does not exceed the speed of 

packet creation. Some fluctuations might have appeared had any packets been lost on the 

route or had traffic backed up at a queue. However, the data rates for the queues and 

radio equipment was sufficiently high to avoid any such problem. 

Because packets follow a specified route, no duplicate packets are ever created. 

Thus the throughput at the radio receiver matches the traffic received at the sink for the 

JSRC. All packets received at the receiver are sent along to the sink. Thus, the graph for 

traffic received in Figure 31 is virtually identical to the graph in Figure 30. 

 

Figure 31: Traffic Received (packets/sec) at JSRC sink in Scenario 2 (with NTO) 

Table 13 lists packet statistics for all of the nodes in Scenario 2 with routing (case 

1 – using NTO) rather than flooding (case 2 – no NTO). The columns are as defined for 

Table 12. The source at the R-H created 3,600 packets in a one-hour time frame and sent 

them only to the AWACS. The AWACS received 100% of the packets and forwarded 

them all to the KC-135_2. The KC-135_2 received 100% of the packets and sent them on 

0

0.2

0.4

0.6

0.8

1

1.2

0 600 1200 1800 2400 3000 3600T
ra

ff
ic

 R
ec

ei
ve

d
 (

p
ac

k
et

s/
se

c)

Simulation Time (sec)



 

112 

to the AOC. The AOC also received 100% of the packets and passed them along to the 

JSRC. Finally, the JSRC received 100% of the packets and no further routing was 

performed. Out of 16 nodes in the scenario, only 5 (or 31.25%) were involved in the data 

transfer. No duplicate packets were destroyed anywhere, because no duplicate packets 

were created and each packet was sent only once by each node on the path. 

Table 13: Packet statistics for nodes in Scenario 2 (with NTO) 

Node 
Packets 

Destroyed 
Packets 

Forwarded 
% Received 

A-10 0 0 0 
AOC 0 3600 100 

AWACS 0 3600 100 
F-22 0 0 0 
JSF 0 0 0 

JSRC 0 N/A 100 
Joint_STARS 0 0 0 

KC-135_1 0 0 0 
KC-135_2 0 3600 100 
KC-135_3 0 0 0 
Navy_BG 0 0 0 

R-H N/A 3600 N/A 
Rivet_Joint 0 0 0 

UAS_1 0 0 0 
UAS_2 0 0 0 
WOC 0 0 0 
[Total] 0 14400  

 

Finally, the graph in Figure 32 shows the ETE delay in seconds for packets 

created at the R-H and reaching the sink at the JSRC. The fluctuations are due to the 

change in route length as the AWACS and KC-135_2 traverse their orbits. The average 

ETE delay is about 0.8560 seconds. The average ETE delay for case 2 is about four times 

longer than the ETE delay for case 1. The extra delay is expected because flooding the 
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network results in packets taking multiple paths to the destination. Naturally, packets 

taking the shortest of the paths arrive at the sink first, and those are the packets whose 

delay is recorded. Unless the specified route is also the shortest route, flooding has 

shorter delays. 

 

Figure 32: ETE Delay (sec) at JSRC sink in Scenario 2 (with NTO) 
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In terms of ETE delay, having an NTO for Scenario 2 seems, at first glance, to be 

detrimental. Had the scenario involved interactive audio/video or remote instrument 

control, shorter delays would be necessary. However, the data loss associated with case 1 

is unacceptable for such applications. For non-interactive teledata purposes, such as 

modeled here, application quality can remain uncompromised even with latencies on the 

order of seconds [62:8]. The peak delay for case 2 is less than one second, which is still 

tolerable for this particular scenario. 

Some improvements can be made to case 1 of Scenario 2 by making the flooding 

behavior more sophisticated. For example, nodes can be instructed to mark each packet 

they forward with an identifier. In this way, any node that receives a packet can refrain 

from forwarding that packet back to the node from which it was received. This results in 

fewer destroyed packets at each node and less wasted bandwidth. Another improvement 

can be made by implementing carrier sensing to alleviate interference and collisions. 

4.1.3 NTO Scenario 3 

In [54, 55], Göçmen illustrates the benefits of an NTO in a CSAR execution phase 

scenario using the JTRS software-defined radio system through two experimental 

simulations. For his scenario, an injured pilot in a deep valley sends a beacon signal that 

is located by satellite and relayed to headquarters. A CSAR Task Force (CSARTF) with 

recovery vehicle is already en route to the pilot’s last known location. Headquarters needs 

to send the exact location of the pilot as a critical image update to the CSARTF. As in the 

previous two scenarios, this scenario is broken down into two cases. In the first case, the 

data sent by headquarters is broadcast to the recovery vehicle through every available 
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asset. In the second case, data is flooded along four different routes designated by an 

NTO. Each of these two cases is examined under high and low traffic loads. 

Figure 33: Scenario 3 overview 

Göçmen’s CSAR scenario was implemented using OPNET Modeler 14.0. A total 

of six aircraft are employed in the 45-minute scenario. When traffic is flooded in the case 

without an NTO process, the flooding is referred to as Route 1. For the case where an 

NTO process specifies a route, the four routes are numbered 2 through 5. See Figure 33 

above for an overview of the assets and routes involved. 
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Even though the assets shown are all of different types, they are assumed to have 

a common JTRS. Transmission speed was set at 90 Kbps using 5,000-bit packets with a 

constant interarrival time. For high traffic loads, the interarrival time was set at 0.0625 

seconds. For low traffic loads, the interarrival time was set at 0.1667 seconds. The metric 

measured for all cases and traffic loads was the end-to-end delay. Each experiment was 

run ten times with different random seeds. Since there are five different routes subjected 

to two traffic loads, a total of 100 simulation runs were performed. 

Göçmen hypothesized the end-to-end delay to be longer when packets are flooded 

than when a specific route is utilized regardless of traffic load. He found his hypothesis to 

be true under high traffic loads, but that flooding was faster under low traffic loads. The 

results in this section come from Göçmen’s thesis [55]. They are included here because 

his experiments were inspired by the results from Scenario 1 and were completed prior to 

the publication of this dissertation. 

Figure 34 is a scatter plot showing the ETE delay in seconds for all five routes 

under a high traffic load. The figure shows Route 1 (flooding) experiencing the longest 

ETE delays for the majority of the simulation time. The plots for Route 2 and Route 3 can 

be seen to overlap, as do the plots for Route 4 and Route 5. The overlap can be explained 

by the routes having common last hops. As the pairs of routes intersect at the last hop, 

packets begin to queue up under high traffic loads. Packets from each source experience 

similar delays as they wait to be forwarded. 

Figure 35 shows the 95% confidence intervals for mean ETE delay in seconds 

using the results from ten random seeds. The confidence intervals support Göçmen’s 
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hypothesis that ETE delay is shorter for the NTO designated routes under a high traffic 

load. Note that the interval for Route 1 (flooding) does not overlap the intervals for any 

of the specified routes. 

 

Figure 34: ETE delay (sec) for Scenario 3 (high traffic load) [55:36] 

 

Figure 35: 95% CI for mean ETE delay (sec) for Scenario 3 (high traffic load) [55:37] 

275025002000150010005000

6

5

4

3

2

1

0

Timesteps

En
d-

to
-E

nd
 D

el
ay

 

Route1
Route2
Route3
Route4
Route5

Route

Scatterplot of Route1,Route2,Route3,Route4,Route5 

Route5Route4Route3Route2Route1

5.5

5.0

4.5

4.0

3.5

3.0

En
d-

to
-E

nd
 D

el
ay

95% CI for the Mean
Interval Plot of Route 1,Route 2,Route 3, Route 4, Route 5



 

118 

Figure 36 is a scatter plot showing the ETE delay in seconds for all five routes 

under a low traffic load. The figure shows Route 1 (flooding) experiencing the shortest 

ETE delays for the majority of the simulation time. 

 

Figure 36: ETE delay (sec) for Scenario 3 (low traffic load) [55:39] 

Figure 37 shows the 95% confidence intervals for mean ETE delay in seconds 

using the results from ten random seeds. Here, the confidence intervals refute Göçmen’s 

hypothesis that ETE delay is shorter for the NTO designated routes under a low traffic 

load. There is a small overlap between the intervals for Route 1 and Route 5, but clearly, 

the NTO-designated routes face higher latency. 

As in Scenario 2, this scenario shows how the existence of an NTO process can 

improve the QoS of the GIG. Under both high and low traffic loads, bandwidth is saved. 
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can argue, however, that the GIG in a CSAR mission is not likely to be lightly loaded. 

Also, the slight increase in ETE in a low load situation is justified by a greater 

improvement in overall bandwidth availability and potential decrease in interference. 

 

Figure 37: 95% CI for mean ETE delay (sec) for Scenario 3 (low traffic load) [55:40] 
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30 randomly generated test cases are not run for all networks with 25 to 40 nodes. In 

some configurations, only a single test case was able to be run to completion. Six of the 

larger 40-node configurations and one of the 35-node configurations were not performed. 

The results for these configurations are offered in the second subsection. The confidence 

intervals there are larger in general, or nonexistent. 

4.2.1 Networks of 5-20 Nodes 

All configurations for networks with 5 to 20 nodes have been solved for 10 

polymorphisms with 30 randomly generated input files. The configurations are 

referenced by the shorthand ‘#N#C#I’ where each ‘#’ symbol is replaced by the actual 

number of nodes, commodities per node, and interface types. For example, 5N2C3I 

denotes a network configuration consisting of 5 nodes, where each node is the source of 2 

commodities and has 3 interface types available. Each input file randomly assigns the 

destination nodes for commodities and the potential-adjacency matrix. Thus, for each 

configuration, there are 30 test cases (input files) that GAMS/CoinCbc runs through 10 

iterations for a total of 300 topologies generated per configuration. 

Tables 14-17 show the 95% confidence intervals for the mean and median times 

in seconds required to generate each polymorphism for each configuration. The minimum 

and maximum solution times out of the 300 topologies for each configuration are also 

given. The tables are designed for ease of comparison. Each table shows the results for a 

set number of nodes. To compare configurations that vary only in number of nodes, look 

at corresponding rows from each table. To compare configurations varying only in the 

number of commodities per node, look at commonly shaded rows within a table. For 
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configurations only differing by interface types per node, consider a group of four 

consecutive rows shaded from white to dark grey. 

Table 14: PNP time results for 5-node configurations 

Config. 
95% Confidence 

Interval for Mean 
Time in Seconds 

95% Confidence 
Interval for Median 

Time in Seconds 

Min. 
Time in 
Seconds 

Max. 
Time in 
Seconds 

5N1C1I 0.31288 0.39826 0.16322 0.26400 0.059 2.001
5N1C2I 0.16817 0.20541 0.11755 0.12745 0.068 1.497
5N1C3I 0.40525 0.50076 0.26055 0.33100 0.080 2.289
5N1C4I 0.33866 0.46356 0.16400 0.18100 0.084 2.897
5N2C1I 0.20297 0.26780 0.10000 0.11200 0.070 2.234
5N2C2I 0.12472 0.14379 0.10000 0.11400 0.082 1.051
5N2C3I 0.23106 0.31110 0.13255 0.17500 0.095 3.531
5N2C4I 0.17575 0.22977 0.14255 0.18934 0.111 2.813
5N3C1I 0.18283 0.21487 0.14400 0.15400 0.113 1.493
5N3C2I 0.20042 0.21757 0.18355 0.18845 0.169 1.336
5N3C3I 0.28377 0.30664 0.24800 0.26689 0.207 0.926
5N3C4I 0.34334 0.37033 0.29500 0.32345 0.251 1.130

 

Table 15: PNP time results for 10-node configurations 

Config. 
95% Confidence 

Interval for Mean 
Time in Seconds 

95% Confidence 
Interval for Median 

Time in Seconds 

Min. 
Time in 
Seconds 

Max. 
Time in 
Seconds 

10N1C1I 0.17837 0.20313 0.15655 0.16500 0.101 0.786
10N1C2I 1.06170 1.35600 0.35060 0.40560 0.157 4.297
10N1C3I 1.38000 1.54730 1.41360 1.59760 0.201 4.132
10N1C4I 2.74590 3.11330 2.59370 2.98370 0.293 7.798
10N2C1I 0.27998 0.31513 0.25955 0.27500 0.208 2.212
10N2C2I 0.78220 0.88212 0.65100 0.72745 0.406 2.595
10N2C3I 1.62410 1.84930 1.32860 1.52690 0.563 6.052
10N2C4I 3.00970 3.43020 2.54290 3.05310 0.718 12.675
10N3C1I 0.36812 0.40221 0.33800 0.35100 0.279 1.658
10N3C2I 1.03580 1.15060 0.90810 0.97830 0.552 3.065
10N3C3I 2.45870 2.80790 2.08410 2.42700 0.813 8.871
10N3C4I 4.22980 4.86960 3.68130 4.23590 1.056 24.586
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Table 16: PNP time results for 15-node configurations 

Config. 
95% Confidence 

Interval for Mean 
Time in Seconds 

95% Confidence 
Interval for Median 

Time in Seconds 

Min. 
Time in 
Seconds 

Max. 
Time in 
Seconds 

15N1C1I 0.34589 0.36879 0.32511 0.35200 0.268 1.209
15N1C2I 2.91340 3.22170 2.83270 3.16810 0.536 8.715
15N1C3I 11.3070 13.5250 8.64600 10.5130 1.099 58.960
15N1C4I 37.3560 48.0260 23.0420 29.3320 1.862 328.274
15N2C1I 0.55224 0.57662 0.51755 0.53700 0.448 1.120
15N2C2I 3.42250 3.88170 3.02130 3.56020 0.976 14.255
15N2C3I 12.2080 14.9900 9.86400 11.5850 1.455 120.301
15N2C4I 51.8210 65.3710 37.7590 47.3210 2.653 503.496
15N3C1I 0.89848 0.98623 0.77111 0.79245 0.668 3.365
15N3C2I 4.62430 5.17570 4.11250 4.98180 1.531 13.702
15N3C3I 19.7440 25.7890 14.1600 16.7470 2.454 269.669
15N3C4I 109.960 141.330 72.4700 90.3300 4.042 889.007

 

Table 17: PNP time results for 20-node configurations 

Config. 
95% Confidence 

Interval for Mean 
Time in Seconds 

95% Confidence 
Interval for Median 

Time in Seconds 

Min. 
Time in 
Seconds 

Max. 
Time in 
Seconds 

20N1C1I 0.54250 0.55993 0.53300 0.54689 0.458 1.177
20N1C2I 6.40600 7.99800 5.47700 6.24500 1.052 103.283
20N1C3I 78.0300 115.430 39.9600 54.1400 2.941 1501.457
20N1C4I 685.500 1044.20 312.900 442.000 6.246 18238.805
20N2C1I 1.05160 1.09740 0.99560 1.02230 0.871 2.212
20N2C2I 7.75630 9.00090 6.92620 8.09030 2.048 44.131
20N2C3I 104.830 150.700 45.9400 71.1300 3.073 1599.392
20N2C4I 900.000 1364.60 351.100 511.700 23.504 15435.227
20N3C1I 1.74660 2.01750 1.42900 1.46540 1.275 11.911
20N3C2I 11.5390 13.4610 9.58700 11.6090 3.059 78.755
20N3C3I 121.800 166.390 58.7000 85.9400 4.636 1890.646
20N3C4I 1786.50 2812.70 628.700 962.300 19.981 37831.996

 

From these tables, it can be seen that solution time increases more dramatically 

with respect to the number of nodes and the number of interface types per node than with 
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respect to the number of commodities per node. Of these configurations, the longest 

solution time for any single iteration was about 10.5 hours for one case of configuration 

20N3C4I. 

To examine true solution costs across polymorphisms, the percentage change 

from optimum is considered. Because the MILP is complete and optimal, the first 

solution without domain modifications is an optimum solution. The percentage change 

from the cheapest solution to the most expensive polymorphism is calculated by taking 

the difference in true cost and dividing by the optimal value. For each configuration, 30 

calculations are performed (one for each test case). Those 30 percentage changes are 

averaged. Tables 18-21 below show the results. The first column in the tables is the 

configuration shorthand, the second column contains the mean percentage change in cost, 

and the standard deviation is in the third column. In addition, the minimum and 

maximum percentage changes in cost are reported in columns four and five. 

Table 18: True cost results for 5-node configurations 

Config. 
Mean % 
Change 
in Cost 

Standard 
Deviation 

Min. % 
Change in 

Cost 

Max. % 
Change 
in Cost 

5N1C1I 27.70 11.24 11.76 53.85 
5N1C2I 33.45 14.83 12.50 64.29 
5N1C3I 29.33 13.01 6.67 63.64 
5N1C4I 32.13 12.24 13.33 63.64 
5N2C1I 22.83 12.08 11.54 73.91 
5N2C2I 24.66 8.14 13.04 52.17 
5N2C3I 20.83 7.83 8.33 42.86 
5N2C4I 21.76 7.89 8.70 40.00 
5N3C1I 38.75 10.80 21.21 58.06 
5N3C2I 25.38 7.20 12.90 45.16 
5N3C3I 21.02 6.56 12.90 41.94 
5N3C4I 21.05 4.89 9.68 30.00 
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Table 19: True cost results for 10-node configurations 

Config. 
Mean % 
Change 
in Cost 

Standard 
Deviation 

Min. % 
Change in 

Cost 

Max. % 
Change 
in Cost 

10N1C1I 28.93 12.70 4.08 56.76 
10N1C2I 32.50 10.78 10.82 54.84 
10N1C3I 34.39 10.94 19.44 68.00 
10N1C4I 33.27 8.53 18.18 58.62 
10N2C1I 29.99 11.69 14.75 55.00 
10N2C2I 33.31 6.06 18.97 44.64 
10N2C3I 29.45 6.96 18.18 49.06 
10N2C4I 26.72 5.59 16.67 42.31 
10N3C1I 31.92 8.35 17.02 50.59 
10N3C2I 35.42 7.48 20.00 58.90 
10N3C3I 33.33 5.44 24.32 45.07 
10N3C4I 27.59 6.22 16.44 37.68 

 

Table 20: True cost results for 15-node configurations 

Config. 
Mean % 
Change 
in Cost 

Standard 
Deviation 

Min. % 
Change in 

Cost 

Max. % 
Change 
in Cost 

15N1C1I 24.13 10.64 10.00 55.84 
15N1C2I 31.50 7.34 16.95 48.28 
15N1C3I 31.53 5.21 21.43 44.23 
15N1C4I 31.44 5.41 22.22 45.28 
15N2C1I 26.03 9.19 13.39 49.12 
15N2C2I 33.59 5.55 25.00 43.33 
15N2C3I 29.31 4.32 20.65 39.77 
15N2C4I 27.85 4.58 19.77 37.21 
15N3C1I 28.47 10.08 10.85 53.37 
15N3C2I 36.69 6.71 26.52 54.40 
15N3C3I 31.74 5.11 22.40 42.61 
15N3C4I 29.10 3.86 23.08 39.50 
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Table 21: True cost results for 20-node configurations 

Config. 
Mean % 
Change 
in Cost 

Standard 
Deviation 

Min. % 
Change in 

Cost 

Max. % 
Change 
in Cost 

20N1C1I 20.61 13.28 4.38 61.61 
20N1C2I 29.80 5.34 21.84 44.71 
20N1C3I 28.61 5.64 22.50 45.21 
20N1C4I 29.91 6.20 20.51 44.44 
20N2C1I 19.79 8.19 2.90 40.10 
20N2C2I 36.58 5.09 29.45 50.69 
20N2C3I 31.83 4.41 22.73 42.52 
20N2C4I 28.42 4.60 18.46 39.17 
20N3C1I 19.63 5.52 6.71 29.61 
20N3C2I 38.91 4.44 27.92 47.03 
20N3C3I 34.12 3.76 26.37 41.04 
20N3C4I 30.32 3.87 21.84 38.92 

 

There does not appear to be any clear pattern in solution cost correlating to the 

number of nodes, the number of commodities per node, or the number of interfaces per 

node. The minimum and maximum percentage changes in cost do offer some interesting 

interpretations. 

When the minimum percentage change is small, it implies that all of the 

polymorphisms generated for that case were very close to optimal. For example, consider 

the minimum percentage change of 4.08% for one case of configuration 10N1C1I. The 

sequence of polymorphism costs for this case is 49, 49, 50, 50, 50, 50, 51, 51, 51, and 51. 

The first two solutions are optimal and different from each other (with a ∆ of 0.1111). 

The next four solutions consist of two different topologies that alternate. The last four 

solutions are all different from each other. 
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The largest maximum percentage change of 73.91% occurred for one case of 

configuration 5N2C1I. The sequence of polymorphism costs for this case is 23, 25, 27, 

25, 28, 27, 23, 40, 23, and 24. Most of the polymorphisms stay within 21.74% of optimal. 

Typically, a commodity may have a few routes from source to destination involving one 

or two hops to choose from. From iteration to iteration, the additional cost to reuse those 

paths increases. Eventually, it becomes cheaper for the commodity to use a longer route 

with three or four hops involving edges that were not previously traversed. In this 

particular case, several commodities were forced to take longer routes at the same time, 

leading to a big jump in true cost. However, for the next iteration, the additional cost of 

those longer routes increased making the shorter routes more cost effective again. This 

case seems to be exceptional. It appears that the MILP approach to the PNP produces 

polymorphisms within 75% of optimum for the potential-adjacency matrices used here. 

This bound of 75% is most certainly tied to the network topology described by the 

potential-adjacency matrix in the randomly generated input files. One can design a 

network in a ring topology in such a way that each node has a commodity that is destined 

one node clockwise in the network. Most polymorphisms for such a network utilize one-

hop routes for the commodities. However, as the edges get used repeatedly, the additional 

cost increases until eventually a counter-clockwise route is cheaper. A switch from 

clockwise to counter-clockwise then results in a jump in true cost that is proportional to 

the size of the ring. 

The measured difference of each polymorphism from the previous (∆), the 

diameter of each polymorphism, and the average number of hops for the commodities of 
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each polymorphism were recorded for all 30 random test cases of each configuration. The 

averages of these metrics are tabulated in Tables 22-25. The average ∆ decreases as the 

number of nodes increases, for all configurations. For most of the configurations, the 

average ∆ decreases as the number of commodities per node increases; however, it does 

not appear to be influenced by the number of interfaces per node. The average diameter 

tends to increase with respect to the number of nodes and decrease with respect to the 

number of interfaces per node. There may be a slight increase with respect to the number 

of commodities per node. Finally, the average number of hops increases with respect to 

the number of nodes and decreases with respect to the number of interfaces per node. The 

average number of hops does not appear to be influenced by the number of commodities 

per node. 

Table 22: Other PNP results for 5-node configurations 

Config. Average D Average 
Diameter 

Average # 
of Hops 

5N1C1I 0.32659037 2.78 1.814 
5N1C2I 0.392781852 2.266666667 1.628666667 
5N1C3I 0.395125185 2.176666667 1.593333333 
5N1C4I 0.379387407 1.89 1.508 
5N2C1I 0.314182222 3.023333333 1.811 
5N2C2I 0.38457963 2.576666667 1.668666667 
5N2C3I 0.39370037 2.39 1.626333333 
5N2C4I 0.389385185 2.263333333 1.593 
5N3C1I 0.285052963 2.996666667 1.788423333 
5N3C2I 0.34692 2.54 1.653093333 
5N3C3I 0.349472593 2.286666667 1.583996667 
5N3C4I 0.341362593 2.2 1.565306667 
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Table 23: Other PNP results for 10-node configurations 

Config. Average D Average 
Diameter 

Average # 
of Hops 

10N1C1I 0.175595556 4.793333333 2.686666667 
10N1C2I 0.227894815 3.636666667 2.252333333 
10N1C3I 0.21799963 3 2.014666667 
10N1C4I 0.209883704 2.843333333 1.916666667 
10N2C1I 0.166133704 5.25 2.694 
10N2C2I 0.205910741 3.853333333 2.2535 
10N2C3I 0.199552963 3.373333333 2.074666667 
10N2C4I 0.192773333 3.123333333 1.9675 
10N3C1I 0.160722593 5.5 2.783933333 
10N3C2I 0.182757778 4.016666667 2.28145 
10N3C3I 0.171428889 3.406666667 2.054923333 
10N3C4I 0.167958148 3.07 1.9542 

 

 

Table 24: Other PNP results for 15-node configurations 

Config. Average D Average 
Diameter 

Average # 
of Hops 

15N1C1I 0.130969259 6.823333333 3.615143333 
15N1C2I 0.164442593 4.35 2.63778 
15N1C3I 0.155179259 3.676666667 2.300876667 
15N1C4I 0.147706667 3.27 2.132676667 
15N2C1I 0.117744444 7.293333333 3.64165 
15N2C2I 0.143535556 4.716666667 2.657763333 
15N2C3I 0.139707037 3.903333333 2.387923333 
15N2C4I 0.132989259 3.57 2.213246667 
15N3C1I 0.118127407 7.573333333 3.543036667 
15N3C2I 0.124762963 4.71 2.644603333 
15N3C3I 0.119145185 3.923333333 2.37531 
15N3C4I 0.111257037 3.513333333 2.17035 
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Table 25: Other PNP results for 20-node configurations 

Config. Average D Average 
Diameter 

Average # 
of Hops 

20N1C1I 0.087745185 8.903333333 4.459623333 
20N1C2I 0.137043333 5.353333333 3.096166667 
20N1C3I 0.126212963 4.193333333 2.608333333 
20N1C4I 0.120387407 3.76 2.397833333 
20N2C1I 0.085454074 9.293333333 4.324306667 
20N2C2I 0.113743704 5.463333333 3.044416667 
20N2C3I 0.106434074 4.336666667 2.591166667 
20N2C4I 0.104573704 3.946666667 2.459083333 
20N3C1I 0.085228148 9.043333333 4.056736667 
20N3C2I 0.101305556 5.62 3.056013333 
20N3C3I 0.092512963 4.446666667 2.607216667 
20N3C4I 0.088161481 3.963333333 2.419093333 

 

Lastly, an example of ∆ by polymorphism for configuration 5N3C2I is given in 

Figure 38. The graph consists of 30 panels, each panel corresponding to one of the 30 test 

cases for the configuration. The vertical axis represents the ∆ measurement and the 

horizontal axis represents the polymorphism number. Here, the ten polymorphisms are 

numbered from 0 to 9. Since polymorphism 0 does not have a previous polymorphism, no 

Δ value is plotted for it. Non-zero values for Δ indicate that a polymorphism is different 

than its predecessor, and larger values indicate a larger difference. None of the panels in 

Figure 38 have a zero value plotted, thus configuration 5N3C2I had no cases where any 

topology was repeated in consecutive iterations of the algorithm. Any kind of oscillation 

between polymorphisms is reflected as periodicity in the graphs. A lack of periodicity 

here indicates that most of the topologies generated are unique. A complete set of graphs 

of Δ by polymorphism for all configurations with 5-20 nodes is given in Appendix J. 
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Figure 38: Plots of Δ by polymorphism for 5N3C2I 

4.2.2 Networks of 25-40 Nodes 

All configurations for networks with 25 to 40 nodes involving 1 or 2 interfaces 

types have been solved for 10 polymorphisms with 30 randomly generated input files for 

a full set of 300 polymorphisms. Due to extremely long running times, most of the other 

configurations were limited to only a few test cases. Six of the 40-node configurations 

and one of the 35-node configurations were not completed at all. Table 26 lists the 

number of polymorphisms that were completed for each of the configurations. The 

shorthand for each configuration is listed with the number of polymorphisms completed 

to its right. 
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Table 26: Number of polymorphisms completed for configurations of 25-40 nodes 

Config. # Poly. Config. # Poly. Config. # Poly. Config. # Poly.
25N1C1I 300 30N1C1I 300 35N1C1I 300 40N1C1I 300 
25N1C2I 300 30N1C2I 300 35N1C2I 300 40N1C2I 300 
25N1C3I 300 30N1C3I 30 35N1C3I 20 40N1C3I 0 
25N1C4I 30 30N1C4I 10 35N1C4I 7 40N1C4I 0 
25N2C1I 300 30N2C1I 300 35N2C1I 300 40N2C1I 300 
25N2C2I 300 30N2C2I 300 35N2C2I 300 40N2C2I 300 
25N2C3I 300 30N2C3I 30 35N2C3I 10 40N2C3I 0 
25N2C4I 50 30N2C4I 10 35N2C4I 1 40N2C4I 0 
25N3C1I 300 30N3C1I 300 35N3C1I 300 40N3C1I 300 
25N3C2I 300 30N3C2I 300 35N3C2I 300 40N3C2I 300 
25N3C3I 300 30N3C3I 30 35N3C3I 0 40N3C3I 0 
25N3C4I 30 30N3C4I 10 35N3C4I 6 40N3C4I 0 

 

 Tables 27-30 show the 95% confidence intervals for the mean and median times 

in seconds required to generate each polymorphism for each configuration. The minimum 

and maximum solution times out of the generated topologies for each configuration are 

also given. The tables are shaded as in the previous subsection to ease comparison of 

configurations. In addition to the shading, configurations with fewer than 300 

polymorphisms have the number completed in superscript. 

It is hard to make comparisons in solution times when different numbers of 

polymorphisms are generated for different configurations. Also, the spread in solution 

times among the polymorphisms of a single configuration are very large. For example, in 

35N3C4I, the fastest solution took just under two hours, while the slowest solution took 

more than 85 days. This makes the notion of an average solution time dubious. What is 

clear, both in this subsection and the previous, is the exponential growth in solution times 

with respect to the increased complexity of the base network. 
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Table 27: PNP time results for 25-node configurations 

Config. 
95% Confidence 

Interval for Mean 
Time in Seconds 

95% Confidence 
Interval for Median 

Time in Seconds 

Min. 
Time in 
Seconds 

Max. 
Time in 
Seconds 

25N1C1I 1.0184 1.0592 0.9910 1.0269 0.8140 2.2140
25N1C2I 32.707 43.311 20.636 26.883 2.903 468.499
25N1C3I 1323.4 1893.1 514.9 883.3 10.9 16777.2
25N1C4I

30 32855 112853 5282 64570 59 394682
25N2C1I 2.6141 3.2717 1.9751 2.1824 1.5790 26.9410
25N2C2I 39.361 49.944 27.415 34.783 5.291 503.470
25N2C3I 1994.9 3174.3 539.7 882.6 24.2 51775.3
25N2C4I

50 16035 54472 5098 20199 201 330146
25N3C1I 6.7123 8.2470 3.4928 4.6792 2.2980 44.4540
25N3C2I 48.630 58.069 39.882 48.314 6.134 288.084
25N3C3I 3549 7774 925 1472 28 272056
25N3C4I

30 44680 165843 14786 73604 210 569782
 

 

Table 28: PNP time results for 30-node configurations 

Config. 
95% Confidence 

Interval for Mean 
Time in Seconds 

95% Confidence 
Interval for Median 

Time in Seconds 

Min. 
Time in 
Seconds 

Max. 
Time in 
Seconds 

30N1C1I 1.4333 1.4619 1.4016 1.4324 1.2660 2.2740
30N1C2I 124.38 257.88 52.71 81.86 8.06 9426.64
30N1C3I

30 8530 43691 3311 21087 187 244854
30N1C4I

10 25986 132166 5580 172557 54 177990
30N2C1I 4.4364 5.3939 3.1876 3.3114 2.6360 31.1190
30N2C2I 106.33 141.54 63.10 79.72 13.94 1302.26
30N2C3I

30 1059 73567 2555 17165 101 473978
30N2C4I

10 0 897539 18933 871666 3239 1654354
30N3C1I 8.0000 9.6210 5.9459 6.5789 4.0870 97.1820
30N3C2I 108.51 134.28 88.43 114.84 10.55 1024.74
30N3C3I

30 15729 63577 1884 15636 63 192065
30N3C4I

10 0 1925225 85607 1455458 41198 4092525
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Table 29: PNP time results for 35-node configurations 

Config. 
95% Confidence 

Interval for Mean 
Time in Seconds 

95% Confidence 
Interval for Median 

Time in Seconds 

Min. 
Time in 
Seconds 

Max. 
Time in 
Seconds 

35N1C1I 2.9768 3.6391 2.7803 2.9023 2.2250 49.5100
35N1C2I 639.8 963.0 265.9 371.9 9.2 11622.8
35N1C3I

20 0 1021051 28274 220710 7701 5571853
35N1C4I

7 60456 3427479 381885 3592041 5057 5256748
35N2C1I 8.2356 9.3873 6.2912 6.9272 4.5420 31.5250
35N2C2I 524.17 771.77 231.79 329.76 11.85 8511.36
35N2C3I

10 19781 165599 5267 190121 1489 284025
35N2C4I

1 N/A N/A N/A N/A 138942 138942
35N3C1I 12.352 14.925 9.521 11.169 6.794 133.301
35N3C2I 393.49 507.86 259.93 339.97 15.28 3124.15

35N3C3I
0 N/A N/A N/A N/A N/A N/A 

35N3C4I
6 0 5618167 20337 6568722 7146 7396868

 

Table 30: PNP time results for 40-node configurations 

Config. 
95% Confidence 

Interval for Mean 
Time in Seconds 

95% Confidence 
Interval for Median 

Time in Seconds 

Min. 
Time in 
Seconds 

Max. 
Time in 
Seconds 

40N1C1I 4.2310 4.7167 3.2750 3.3230 3.0570 15.2990
40N1C2I 1868.9 3480.5 600.4 934.3 8.8 82046.6
40N2C1I 6.3259 7.4164 5.9872 6.0900 5.4910 84.7150
40N2C2I 1096.4 1647.0 508.8 778.6 25.4 22684.5
40N3C1I 9.1202 9.5126 9.1306 9.2373 8.3640 37.9090
40N3C2I 875.0 1217.0 641.8 966.6 23.8 20374.4

 

As in the previous subsection, true solution costs across polymorphisms are 

examined using the percentage change from optimum. The values are computed as 

before, and the results are shown in Tables 31-34. Note that for configurations written in 

subscript, the number in superscript indicates the total number of polymorphisms found. 

For example, for 25N1C4I
30, there are three groups of ten polymorphisms for a total of 30. 
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In that case, the mean is the average of three percentage changes. For those with a 

superscript 10, the standard deviation cannot be calculated because there is only one 

value. For those with a superscript 1 or 0, none of the statistics are calculated. 

Table 31: True cost results for 25-node configurations 

Config. 
Mean % 
Change 
in Cost 

Standard 
Deviation 

Min. % 
Change in 

Cost 

Max. % 
Change 
in Cost 

25N1C1I 19.68 7.63 8.67 38.01 
25N1C2I 30.35 4.77 21.82 40.00 
25N1C3I 28.86 5.09 20.56 40.63 
25N1C4I

30 35.52 7.45 24.00 37.78 
25N2C1I 21.94 8.52 3.35 40.43 
25N2C2I 34.07 4.40 26.06 45.00 
25N2C3I 30.06 3.84 23.39 38.79 
25N2C4I

50 27.91 3.20 22.84 31.25 
25N3C1I 18.50 6.66 6.01 38.02 
25N3C2I 39.58 4.53 32.68 51.91 
25N3C3I 33.94 3.11 25.53 40.34 
25N3C4I

30 28.91 3.59 25.23 32.41 
 

Table 32: True cost results for 30-node configurations 

Config. 
Mean % 
Change 
in Cost 

Standard 
Deviation 

Min. % 
Change in 

Cost 

Max. % 
Change 
in Cost 

30N1C1I 16.84 8.19 2.55 32.69 
30N1C2I 32.33 5.63 24.82 47.41 
30N1C3I

30 28.53 3.71 24.65 32.03 
30N1C4I

10 34.51 N/A 34.51 34.51 
30N2C1I 18.50 6.59 2.41 34.38 
30N2C2I 35.75 4.47 27.56 45.68 
30N2C3I

30 31.76 2.07 29.86 33.97 
30N2C4I

10 24.39 N/A 24.39 24.39 
30N3C1I 17.34 10.93 4.68 62.99 
30N3C2I 40.14 3.89 32.53 50.63 
30N3C3I

30 34.56 2.96 31.16 36.64 
30N3C4I

10 23.78 N/A 23.78 23.78 
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Table 33: True cost results for 35-node configurations 

Config. 
Mean % 
Change 
in Cost 

Standard 
Deviation 

Min. % 
Change in 

Cost 

Max. % 
Change 
in Cost 

35N1C1I 17.01 7.66 2.26 31.07 
35N1C2I 30.03 4.43 19.37 42.04 
35N1C3I

20 20.58 1.84 19.28 21.88 
35N1C4I

7 16.31 N/A 16.31 16.31 
35N2C1I 16.60 6.35 6.90 33.82 
35N2C2I 36.07 3.80 31.34 51.26 
35N2C3I

10 31.02 N/A 31.02 31.02 
35N2C4I

1 N/A N/A N/A N/A 
35N3C1I 15.31 5.96 2.62 24.24 
35N3C2I 39.58 3.27 33.25 45.13 

35N3C3I
0 N/A N/A N/A N/A 

35N3C4I
6 22.77 N/A 22.77 22.77 

 

Table 34: True cost results for 40-node configurations 

Config. 
Mean % 
Change 
in Cost 

Standard 
Deviation 

Min. % 
Change in 

Cost 

Max. % 
Change 
in Cost 

40N1C1I 4.10 2.44 0.00 8.68 
40N1C2I 30.96 3.76 21.97 39.11 
40N2C1I 10.91 4.24 3.65 18.07 
40N2C2I 37.05 4.83 28.18 47.08 
40N3C1I 8.82 4.08 3.02 19.53 
40N3C2I 41.60 3.35 34.33 49.77 

 

There does not appear to be any clear patterns in solution costs correlating to the 

number of nodes, the number of commodities per node, or the number of interfaces per 

node. Perhaps the most interesting result in these tables is the minimum percentage 

change in cost of 0% for configuration 40N1C1I. This means there was a test case where 

all ten polymorphism had exactly the same cost. This does not necessarily mean that all 
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ten topologies are identical. However, upon closer inspection, the potential-adjacency 

matrix in one of the input files for 40N1C1I forms a tree. Hence, there is only one 

possible topology that can be made. 

The largest maximum percentage change in cost was 62.99% for 30N3C1I. So, 

the observation still holds that the MILP approach to the PNP produces polymorphisms 

within 75% of optimum, at least for the potential-adjacency matrices used here. 

The average ∆, diameter, and number of hops for the various configurations are 

tabulated in Tables 35-38. The average ∆ does not exist for 35N2C4I because only one 

polymorphism was generated. Similarly, there is no average ∆, diameter, or number of 

hops for 35N3C3I since no polymorphisms were generated for it. These averages are 

taken across all polymorphisms for a configuration, not in groups of ten as was done for 

the true cost results above. 

Table 35: Other PNP results for 25-node configurations 

Config. Average D Average 
Diameter 

Average # 
of Hops 

25N1C1I 0.087516296 9.836666667 4.780966667 
25N1C2I 0.110172593 5.536666667 3.164133333 
25N1C3I 0.106053333 4.536666667 2.7852 
25N1C4I

30 0.094644444 4 2.448 
25N2C1I 0.089023333 10.62 4.783786667 
25N2C2I 0.095329259 5.753333333 3.2554 
25N2C3I 0.088042963 4.58 2.776533333 
25N2C4I

50 0.083735556 4.1 2.5188 
25N3C1I 0.073235926 9.973333333 4.379543333 
25N3C2I 0.082624074 6.013333333 3.253183333 
25N3C3I 0.07504 4.656666667 2.75129 
25N3C4I

30 0.068203704 4 2.478233333 
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Table 36: Other PNP results for 30-node configurations 

Config. Average D Average 
Diameter 

Average # 
of Hops 

30N1C1I 0.059575926 12.19 5.5898 
30N1C2I 0.097767037 6.02 3.480116667 
30N1C3I

30 0.0934 4.8 3.010033333 
30N1C4I

10 0.073971429 11.2 8.0467 
30N2C1I 0.07024037 11.5 5.129233333 
30N2C2I 0.081275185 6.213333333 3.485296667 
30N2C3I

30 0.076092593 4.966666667 2.9449 
30N2C4I

10 0.073044444 4.8 2.7516 
30N3C1I 0.050427037 10.57666667 4.594466667 
30N3C2I 0.073167778 6.553333333 3.537716667 
30N3C3I

30 0.064418519 5.2 2.948566667 
30N3C4I

10 0.061466667 4.4 2.731 

 

 

 

Table 37: Other PNP results for 35-node configurations 

Config. Average D Average 
Diameter 

Average # 
of Hops 

35N1C1I 0.050944074 12.79666667 6.063303333 
35N1C2I 0.08598037 6.38 3.68876 
35N1C3I

20 0.082922222 5.05 3.13565 
35N1C4I

7 0.059233333 4.142857143 2.4 
35N2C1I 0.056544444 12.39666667 5.48479 
35N2C2I 0.072238889 6.523333333 3.65416 
35N2C3I

10 0.0643 4.6 2.9287 
35N2C4I

1 N/A 4 2.186 
35N3C1I 0.041992593 11.18666667 4.878383333 
35N3C2I 0.06449 6.703333333 3.671873333 

35N3C3I
0 N/A N/A N/A 

35N3C4I
6 0.04696 4.333333333 2.516 
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Table 38: Other PNP results for 40-node configurations 

Config. Average D Average 
Diameter 

Average # 
of Hops 

40N1C1I 0.025561852 13.64666667 6.629453333 
40N1C2I 0.079309259 6.963333333 3.97625 
40N2C1I 0.036214444 13.31333333 5.626873333 
40N2C2I 0.065314815 7.03 3.893213333 
40N3C1I 0.024864074 12.2 5.02902 
40N3C2I 0.058340741 7.08 3.870263333 

 

The average ∆ decreases as the number of nodes increases, for all configurations. 

As the number of commodities per node increases, the average ∆ tends to decrease (for 

configurations with more than one interface type). As the number of interface types 

increases, the average ∆ first increases then decreases. The average diameter appears to 

increase as the number of nodes increases; there are some anomalies among the 

configurations without a full set of test cases. As the number of commodities per node 

increases, the average diameter does not follow any clear pattern. The average diameter 

decreases as the number of interface types increases, the only exception being between 

30N1C3I and 30N1C4I. The average number of hops appears to increase as the number 

of nodes increases; again, there are anomalies among the configurations without a full set 

of test cases. As the number of commodities per node increases, the average number of 

hops changes very little, except for configurations with one interface for which it tends to 

decrease. Finally, the average number of hops decreases as the number of interface types 

increases, the only exception being between 30N1C3I and 30N1C4I. 



 

139 

4.3 Polymorphic Networking Security 

In this section the metric of average percentage active time (APAT) is presented 

and analyzed for the various network configurations outlined in Chapter Three (III). In 

addition to the APAT, counts of test cases whose polymorphisms contain at least one 

edge that is active 100% of the time are also given. As in the previous section, this 

section is split into results for networks of 5-20 nodes and networks of 25-40 nodes. This 

split is primarily made because some of the 25-40 node configurations were not able to 

be run to completion. 

4.3.1 Networks of 5-20 Nodes 

When looking at the APAT for the edges in the polymorphisms, there are clear 

trends. When the number of nodes and the number of commodities per node are fixed, the 

APAT decreases as the number of interfaces per node increases. As seen in Figure 39, the 

decrease appears to be inversely proportional to the number of interfaces per node. This 

makes sense because the traffic level remains constant as the number of available edges 

increases. The APAT for edges approaches zero. When a network has, on average, ݊ 

edges between each pair of nodes, it is reasonable to expect that under light loads each 

edge is used 1 ݊⁄  of the time. If the network becomes more heavily loaded, the APAT 

increases since more edges are needed to accommodate the extra flow. This trend is noted 

in the next paragraph. 
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Figure 39: APAT vs. interfaces/node for PNP (5-20)N(1-3)C configurations 

 

When the number of nodes and the number of interfaces per node are fixed, the 

APAT increases as the commodities per node increases. The increase, as seen in Figure 

40, appears to be linear. Since the amount of traffic in the network is increasing while 

everything else is fixed, an increase in edge activity is expected. Since APAT cannot 

exceed 100%, the linearity cannot continue indefinitely. 
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Figure 40: APAT vs. commodities/node for PNP (5-20)N(1-4)I configurations 

Finally, when the number of commodities per node and the number of interfaces 

per node are fixed, the APAT increases as the number of nodes in the network increases. 

This is shown in Figure 41. In this case, the number of potential edges in the network 

increases with extra nodes, however the traffic also increases. The increase in traffic is 

evidently more influential than the increase in potential edges. It is unclear what type of 

function governs the growth. 
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Figure 41: APAT vs. number of nodes for PNP (1-3)C(1-4)I configurations 

The APAT results support the hypothesis that polymorphic networking 

strengthens a network against cyber attack. Moreover, a value can be given to the 

resistance. The value, of course, depends on the configuration of the network. For 

example, consider a network with 15 nodes, 2 interfaces per node, and 3 commodities per 

node. With polymorphic networking, an attacker eavesdropping on a link is expected to 

hear only about 58% of the data available to an attacker on a static network. 

Over all 30 test cases for each configuration involving 4 interfaces per node, there 

was no single edge that was active for more than 80% of the polymorphisms. For 
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configurations with 5 nodes, only those with 1 interface per node had any edges that were 

active 100% of the time. For configurations with 10-20 nodes, all configurations with 1-3 

interfaces per node, except 10N2C3I and 10N1C3I, had at least one case with edges that 

were active 100% of the time. For 1 interface per node, every test case had at least one 

100% active edge. For 2 interfaces per node, the number of such test cases ranged from 3 

to 26, and for 3 interfaces per node ranged from 1 to 5 test cases. Table 39 summarizes 

these results. As evidenced by these results, providing the ability to connect nodes in 

more than one way can significantly reduce the chances that attackers encounter a link 

that allows uninterrupted eavesdropping ability. 

Table 39: Count of PNP cases (out of 30) containing at least one 100% active edge 

 1I 2I 3I
20N3C 30 26 3 
20N2C 30 26 3 
20N1C 30 19 5 
15N3C 30 18 2 
15N2C 30 12 1 
15N1C 30 13 4 
10N3C 30 5 1 
10N2C 30 3 

 
10N1C 30 6 
5N3C 18

 5N2C 17
5N1C 11

 

4.3.2 Networks of 25-40 Nodes 

The trends in APAT for edges in polymorphisms of configurations with 25-40 

nodes are very similar to those for 5-20 nodes. When the number of nodes and the 

number of commodities are fixed, the APAT decreases in inverse proportion to the 

number of interfaces per node. Recall from Table 26 on page 131 that only one 
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polymorphism was found for 35N2C4I. In a sense, the edges in that polymorphism are 

active 100% of the time, since there are no other polymorphisms to rotate among. For this 

reason, the point for 35N2C at 4 interfaces per node is not included in the graph in Figure 

42. Any configurations for which no polymorphisms are found are also excluded. 

 

Figure 42: APAT vs. interfaces/node for PNP (25-40)N(1-3)C configurations 

When the number of nodes and the number of interfaces per node are fixed, the 

APAT increases linearly as the commodities per node increases. In Figure 43, the point 

for 35N4I at 2 commodities per node is included even though only one polymorphism 
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was found. The value is put at 0.1, but based on results from other cases is probably 

closer to 0.209. 

 

Figure 43: APAT vs. commodities/node for PNP (25-40)N(1-4)I configurations 

In Figure 44, when the number of commodities per node and the number of 

interfaces per nodes are fixed, the APAT appears to increase as the number of nodes 

increases, with very little change from 30 to 35 nodes. There do appear to be some 

exceptions (1C4I, 2C4I, and 3C4I for 35 nodes) where APAT decreases. However, these 

points are less trustworthy because relatively few polymorphisms were generated for 

those configurations. 
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Figure 44: APAT vs. number of nodes for PNP (1-3)C(1-4)I configurations 

Over all 12 configurations involving 1 interface per node, there were no test cases 

(out of 30) that did not have at least one edge that was active 100% of the time. For 

configurations with 2 interfaces per node, only 25N1C2I, 25N2C2I, 30N1C2I, 35N1C2I, 

and 40N1C2I had test cases where no edges were active 100% of the time. Respectively, 

the number of such test cases (out of 30) for each are 1, 1, 5, 7, and 10. The results for 

configurations with 3 and 4 interfaces per node are a little more complicated to report 

since a full set of 30 test cases were not run for most of the configurations. For 35N3C4I, 

only six polymorphisms for one test case were found. No edge was active in all six 
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polymorphisms. For 35N2C3I, one test case was solved with ten polymorphisms. There 

was at least one edge active in all ten. For 35N2C4I, only one polymorphism was found, 

so it does not make sense to count activity there. For the remainder of the configurations, 

very few test cases had any edges active 100% of the time. Table 40 summarizes the 

results. For entries with a ‘/’, the first number indicates how many test cases had at least 

one 100% active edge, and the second number indicates how many test cases were run. 

Table 40: Count of PNP cases containing at least one 100% active edge 

 1I 2I 3I 4I 
40N3C 30 30 N/A N/A 
40N2C 30 30 N/A N/A 
40N1C 30 29 N/A N/A 
35N3C 30 30 N/A 0/0.6
35N2C 30 30 1/1 N/A 
35N1C 30 29 0/2 0/0.7
30N3C 30 30 2/3 0/1 
30N2C 30 30 1/3 0/1 
30N1C 30 25 0/3 0/1 
25N3C 30 30 4/30 0/3 
25N2C 30 23 4/30 0/5 
25N1C 30 20 3/30 0/3 

 

4.4 Summary 

This chapter presented analysis and results for the simulations and experiments 

run during the course of this research. Three scenarios were simulated to support the 

hypothesis that having advanced knowledge of networking conditions gathered through 

the existence of an NTO process and using this information to pre-configure the network 

can improve the QoS of the GIG. The first scenario showed how the NTO process allows 

for increased GIG-awareness, which in turn leads to more informed decisions. In that 

scenario, an NTO directive eliminates a potential bottleneck in the network, resulting in 
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prevention of the loss of data from a high-priority source. The second scenario exhibits 

how topology control can play a role in the NTO process. In the second scenario, early 

recognition of aircraft trajectories enables network planners to direct a message intended 

for a single recipient over a specific path rather than broadcast to everyone in the region. 

Consequently, bandwidth is conserved, less unnecessary/redundant work is performed, 

and interference is avoided. The third scenario, designed by Göçmen [55], also examines 

the benefits of the NTO in the context of a CSAR mission. This scenario demonstrates 

how an improvement in latency may be possible by employing an NTO process. 

In addition to the three scenarios, various aspects of the MILP formulation of the 

PNP were observed. The majority of the test configurations were run to completion using 

30 randomly generated cases. As expected, solution times increase dramatically with 

respect to the number of nodes in the network. However, good results were generated for 

all configurations. Polymorphisms for most configurations displayed good variation with 

few cases of cyclic solutions. After the initial optimal solution, subsequent 

polymorphisms remained close to optimal in terms of diameter, average number of hops 

for commodities, and cost. The chapter ended with a look at the APAT results for the 

various configurations. The APAT results support the hypothesis that polymorphic 

networking strengthens a network against cyber attack. 

The next chapter provides conclusions to be drawn from the results and analysis 

in this chapter. These conclusions are used to support the significance of researching the 

NTO process and urging its adoption. Finally, some topics for further research are 

recommended.
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V. Conclusions and Recommendations 

This chapter contains the conclusions generated from completing the four 

objectives of developing and describing the Network Tasking Order (NTO) process, 

producing scenarios in which the existence of an NTO process can be shown through 

simulation to improve the quality of service of a network, devising a polymorphic 

networking algorithm that takes its inputs from the NTO process and strengthens a 

network against cyber attack, and measuring the increased resistance of polymorphic 

networks to cyber attack. The conclusions are then used to explain the significance of the 

research. Finally, a list of recommendations for future research is given. 

5.1 Conclusions of Research 

The NTO process was proposed as a means of improving the quality of service 

and security of military networks by taking advantage of available foreknowledge of 

Global Information Grid (GIG) networking conditions. The first objective of this research 

was to develop and describe the NTO process. In doing so, sources of required 

information were identified, existing tools that can be utilized were explained, and the 

NTO’s place in the Joint Air and Space Operations Center (JAOC) was defended. This 

proposed NTO process allows analysts to optimize the GIG and improve its security. 

The second objective of this research was to exhibit scenarios in which the 

existence of an NTO process can be shown through simulation to improve the quality of 

service (QoS) of a network. Three different scenarios were provided to meet that 

objective. The results of each of the three scenarios showed a clear improvement to QoS 

when a NTO was utilized to enhance GIG-awareness. 
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The third objective was to develop a polymorphic networking algorithm. Erwin’s 

mixed-integer linear programming (MILP) formulation for the Multi-commodity 

Capacitated Network Design Problem (MCNDP) was methodically corrected and 

modified using penalties for path reuse to solve the Polymorphic Networking Problem 

(PNP). The formulation was implemented successfully using the General Algebraic 

Modeling System (GAMS). 

The last objective was to demonstrate that the polymorphic networks generated 

increase the resistance of a network to cyber attack. Although physical networks 

embodying the polymorphisms generated by the penalty approach have not been 

constructed, investigations into the average percentage active time (APAT) for edges in 

the networks show that employing polymorphism in networks with redundant 

connections can decrease an adversary’s ability to eavesdrop significantly. 

5.2 Significance of Research 

The NTO process has been developed and described in far more detail than ever 

done previously. It has been shown to be a viable and beneficial tool for multiple reasons. 

First, the existence of an NTO process encourages better use of assets, which leads to 

improved QoS. With an NTO process, the GIG can be optimized in ways not previously 

possible. Shortcomings can be mitigated, bandwidth can be preserved, latency can be 

reduced, and interference can be avoided. Resources, such as frequency allocations or 

high-value aircraft, which are in short supply, may be applied more strategically. Further, 

having an NTO process can lead to better security for the GIG. Routed communications 

are less prone to interception than broadcast messages. By knowing in advance what 
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nodes and connections will be available in a network, polymorphic networking can be 

applied to make that network more resistant to cyber attack. In short, the warfighter 

benefits. The NTO process may also be applied in other special-purpose networks other 

than the GIG, such as the power grid and critical infrastructures.  

As the Department of Defense moves more toward Net-Centric Warfare and 

Net-Centric Operations, having an NTO process in place now is crucial to permit the 

needed mechanisms to be established and to allow time for NTO content to evolve in a 

steady and controlled manner. In this way, a fully fledged NTO process can be ready to 

go before it is critically needed. This research has identified the mechanisms, tools, and 

sources required to incorporate an NTO production team into the roster of JAOC teams. 

This research has also provided the proof-of-concept for a polymorphic 

networking algorithm with the goal of improving the security of the networks it is applied 

to. The results given here for networks of 5 to 40 nodes are optimal and provide a 

baseline for any future work to compare to. This leads naturally to the next section which 

provides ideas for future research on related topics. 

5.3 Recommendations for Future Research 

Because polymorphic networking is such a new topic, there are many ideas for 

future research. Since solutions found using the MILP formulation take an inordinate 

amount of time for larger networks, the logical next step is to look at heuristics for the 

PNP. The various heuristics that have been spawned to solve the MCNDP as described 

by Erwin can be easily adapted using the penalty approach for the PNP. Care is needed to 

ensure that the errors found in Erwin’s formulation have not been propagated to these 
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heuristics as well. This idea alone can produce material for several Master’s level theses. 

At the time of writing, Gabriel Greve at the Air Force Institute of Technology has already 

begun exploring the adaptation of heuristics for the disjoint paths problem to 

polymorphic networking. 

Of course, other heuristic approaches to the PNP may prove fruitful. A simple 

stochastic approach is to start with a full collection of edges, removing edges at random. 

As each edge is removed, the resulting network is tested for feasibility of network flow. 

If the result is infeasible, the edge is replaced. If the result is feasible, the next random 

edge is removed. The process stops once every edge has either been removed or tested for 

infeasibility. This approach has the benefit that multiple solutions can be generated 

simultaneously. The major drawback of the PNP algorithm in this dissertation, aside from 

long running times, is that it must run linearly. One solution must be found before the 

next one can begin to be solved. 

If heuristics are developed that can provide real-time solutions for moderately 

sized networks, it would be interesting to pair polymorphic networking with a network 

intrusion device. If the network intrusion device detects invasive activity on a particular 

link, the cost of that link can be increased to such a degree that future topologies will not 

have any traffic routed over that edge. The edge can also be removed from the potential 

adjacency matrix. 

Another recommendation is to look into combining the polymorphic networking 

approach of this research with the dynamic network address translation approach of 

Kewley, et al. in [41]. The two approaches should complement each other to provide 
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additional security to the network. In order to achieve this pairing, it is necessary to build 

a physical network that can embody both approaches and be subjected to a red force 

attack. 

Another interesting topic is to examine the effects of the polymorphic networking 

algorithm when faced with a variety of network types. The input files used here basically 

describe a random graph. If the adjacency percentage is set to 100%, the product is a 

complete graph. It would be interesting to see what kinds of results are obtained when 

presented with an exponential or scale-free network, for instance. Under what conditions 

does polymorphic networking give the best results and the worst results? 

In regards to the NTO process, another venue where sufficient advance 

information is available for network planners to work with is the airline industry. The 

schedules and routes for regular flights are known months ahead of time. Any kind of 

mobile communications network that uses passenger planes for a backbone can surely 

benefit from the optimization and security that an NTO-like process provides. Research 

into how cancellations, delays, and rerouted flights should be handled to avoid negative 

impacts to the network needs to be performed. 

5.4 Summary 

Chapter Five (V) has discussed the conclusions and significance of this research. 

The NTO process can improve the QoS and security of military networks by enhancing 

GIG-awareness which facilitates the application of topology control and polymorphic 

networking. Several avenues of potential future research were also recommended. 
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Appendix A. TCNO Example 

Time Compliance Network Orders (TCNO) are downward-directed operations, 

security, or configuration management-related orders that provide a standardized 

mechanism to issue one “order” to responsible Air Force agencies, directing how to 

operate and make changes to the Air Force Enterprise Network [65:17]. The following 

sample illustrates the format for a manually generated TCNO [65:59-60]. 

CLASSIFICATION: UNCLASSIFIED 
 
RELEASE TIME: 03/09/2004 7:20:14:AM CST 
 
TCNO TRACKING NUMBER: TCNO AFNOSC 2004-069-001 
 
ORIGINATING AGENCY: AFNOSC 
 
PRIORITY: Critical 
 
SUBJECT: ASN.1 Vulnerability Could Allow Code Execution, MS 04-007 
 
MISSION IMPACT: System Compromise 
 
EXECUTIVE SUMMARY: 
 
1. Summary 
 
1.1. A vulnerability in the Microsoft ASN.1 Library could allow... 
 
2. Implementation Details  
 
2.1. Affected platforms, operating systems, applications, and versions: 
 
Microsoft Windows NT Server 4.0 Service Pack 6a 
Microsoft Windows NT Server 4.0 Terminal Server Edition Service Pack 6 
 
2.2. Countermeasure implementation instructions 
 
2.2.1. Users should download patches from ENOSC’s website and follow the posted 
installation instructions. 
 
2.3. Estimated downtime required to implement the countermeasures: 
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2.3.1. Manually per system: 5 to 20 minutes 
 
2.3.2. Automated update system (e.g., SMS): 30 minutes per thousand clients. 
 
2.4. Risks associated with non-compliance: Remote Code Execution 
 
ACTION: Apply fix action specified in paragraph 2.2 to classified and unclassified 
systems to comply with this TCNO. 
 
REMARKS: 
 
1. Statistical Reporting 
 
1.1. Report statistics in accordance with AFI 33-138, Chapter 3. 
 
1.2. Discontinue status updates once compliance is reached and reported to the AFNOSC. 
 
REPORTING REQUIREMENTS: 
 
1. All organizations with eTANG capability will report compliance via eTANG. 
Compliance will be recorded in the appropriate boxes within the STATISTICS TAB. 
 
2. For organizations lacking eTANG, reporting to the AFNOSC must be accomplished 
via SIPRNET E-mail message with the subject line of “COMPLIANCE STATISTICS 
FOR TCNO AFNOSC 2004-069-001” 
 
RECEIPT ACKNOWLEDGMENT REQUIRED DATE: 17 Feb 04 
 
COMPLIANCE REQUIRED DATE: 23 Feb 04 
 
STATISTICS REQUIRED DATE: 23 Feb 04 
 
POC INFORMATION: AFNOSC Crew Commander, mailto:afnosc@barksdale.af.mil, 
DSN 781-1043 
 
REFERENCES: MS 04-007 
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Appendix B. C4 NOTAM Example 

“Command, Control, Communications, and Computers Notice to Airmen (C4 

NOTAM) are closely related to TCNOs with the primary difference being that they are 

informative in nature and are not used to direct actions” [65:33]. There are four types of 

C4 NOTAMs: Informative, Scheduled Event, Unscheduled Event, and Summary. The 

following sample illustrates the format for a manually generated Informative C4 

NOTAM [65:69]. 

CLASSIFICATION: UNCLASSIFIED 
 
RELEASE TIME: 03/09/2004 7:20:14:AM CST 
 
TRACKING NUMBER: C4-N AFNOSC 2004-052-001 
 
ORIGINATING AGENCY: AFNOSC 
 
TYPE: Informative 
 
PRIORITY: Low 
 
SUBJECT: Port 3531 AFIN Block 
 
MISSION IMPACT: Loss of Port 3531 communications prevents remote administration 
of non-critical legacy systems x and y. Nearby administrators still able to physically 
access system and accomplish mission. 
 
EXECUTIVE SUMMARY: In response to NSIRC-047-04 addressing Peer to Peer (P2P) 
activity from military hosts, AFNOSC will implement a block for port 3531... 
 
ACTION: Exemption requests should be directed to the AFNOSC... 
 
REMARKS:  
 
REPORTING REQUIREMENTS: None 
 
RECEIPT RESPONSE REQUIRED DATE: None 
 
COMPLIANCE REQUIRED DATE: None 
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STATISTICS REQUIRED DATE: None 
 
POC INFORMATION: AFNOSC Crew Commander, afnosc@barksdale.af.mil, DSN 
781-1043 
 
REFERENCES: NSIRC-047-04 
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Appendix C. ATO Message Example 

The following is an example ATO message taken from the United States Message 

Text Format (USMTF) Message Browser Help, 2004 Baseline edition [28]. The 69 

characters per line maximum is violated here to conserve space and improve readability. 

EXER/DESERT WIND// 
MSGID/ATO/USCENTCOM/ATO A/OCT/CHG/1// 
AKNLDG/YES// 
TIMEFRAM/FROM:010600ZOCT1998/TO:020559ZOCT1998/ASOF:302100ZSEP1998// 
TSKCNTRY/US// 
SVCTASK/N// 
TASKUNIT/CVN68 VA-165/ICAO:NMTZ/00201-00320// 
AMSNDAT/N/0111I/-/AN/MC/INT// 
MSNACFT/3/ACTYP:A6E/TALON 11/2GBU/-/TN11/-/00121/B:20111/00122/B:30111/00123/-// 
ARINFO/APPLE 20/4010A/B:34010/NAME:BLUE TRACK/200/ARCT:010815Z/NDAR:010845ZOCT 
/KLBS:30.0/PFREQ:343.3/SFREQ:277.8/AE20/ACTYP:KC10/CDT/2/TNKR:1/18-81/2-2-3// 
1MSNRTE 
/NAME                /ENTRY TIME/ENTRY PT  /EXIT TIME/EXIT PT   /TAS 
/BLUE 23             /010900ZOCT/ALFA      /011000Z  /CHARLIE   / 370// 
9PKGDAT 
/PKGID/UNIT                /MSNNO   /PMSN  /NO/ACTYPE   /ACSIGN 
/AN   /CVN68 VA-165        /0111I   /INT   / 3/AC:A6E   /TALON 11 
/AN   /CVN68 VAQ-138       /0171S   /EW    / 1/AC:EA6B  /CLAW 71 
/AN   /CVN68 VF-24         /0131D   /ESC   / 2/AC:F14A  /BEAK 31// 
GTGTLOC/P/TOT:011000ZOCT/NET:010955ZOCT/NLT:011005Z 
/MAIN COMMAND CENTER/ID:N1234F12345AA001/CP/NORTH COMPLEX 
/DMPIS:354738N0473815E/WE/257FT/A1497/1/DESTROY/AA137// 
REQNO/1F785I// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
TASKUNIT/CVN68 VAQ-138/ICAO:NMTZ/00301-00450// 
POC/ZAPOLSKI/CDR/N61/LOC:NIMITZ/FRQ:243.0GHZ// 
AMSNDAT/N/0171S/-/AN/-/EW/SEAD// 
MSNACFT/1/ACTYP:EA6B/CLAW 71/HARM/PODS/-/-/-/B:20171/-/B:30171// 
ARINFO/APPLE 20/4010A/B:34010/NAME:BLUE TRACK/200/ARCT:010815Z/NDAR:010845ZOCT 
/KLBS:20.0/PFREQ:343.3/SFREQ:277.8/AE20/ACTYP:KC10/CDT/2/TNKR:2/18-81/2-2-3// 
PKGCMD/AN/CVN68 VA-165/0111I/TALON 11/TN01// 
AMSNLOC/010950ZOCT/011010ZOCT/SEIRAQ/270/1// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
6EWDATA 
/EMITTYP        /ELNOT  /FC/LOWFRQ       /UPFRQ        /EA-TECQ 
/TYPE:GCIRDR    /-      /ET/ F:365.798GHZ/ F:650.477GHZ/INCDRGPO// 
TASKUNIT/CVN68 VF-24/ICAO:NMTZ/00401-00510// 
AMSNDAT/N/0131D/-/AN/-/ESC// 
MSNACFT/2/ACTYP:F14A/BEAK 31/2P2S2/FAMMO/BK31/25/00125/B:20131/00126/B:30131// 
ARINFO/GRAPE 11/4011A/B:34011/NAME:ORANGE TRACK/200/ARCT:010815Z/NDAR:010845ZOCT 
/KLBS:20.0/PFREQ:323.3/SFREQ:242.8/GE11/ACTYP:KC135/CDT/3/TNKR:1/29-92/3-3-4// 
MSNACFT/2/ACTYP:F14A/BEAK 33/4B2S2/BEST/BK33/26/00126/B:20133/00127 
/B:30133// 
ARINFO/GRAPE 11/4011A/B:34011/NAME:ORANGE TRACK/200/ARCT:010815Z/NDAR:010845ZOCT 
/KLBS:20.0/PFREQ:323.3/SFREQ:242.8/GE11/ACTYP:KC135/CDT/3/TNKR:2/29-92/3-3-4// 
URMKREF/A// 
PKGCMD/AN/CVN68 VA-165/0111I/TALON 11// 
AMSNLOC/010845ZOCT/011200ZOCT/SEIRAQ/310/1// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
GENTEXT/UNIT REMARKS/A: FORCE PROTECTION FOR VA-165 MSN NO. 0111I// 
TASKUNIT/CVN68 VS-33/ICAO:NMTZ// 
AMSNDAT/N/4020N/-/-/-/SUCAP/AR// 
MSNACFT/1/ACTYP:S3B/PLUG 20/4MK20/AREF/-/-/-/B:24020/-/B:34020// 
AMSNLOC/010900ZOCT/010930ZOCT/JUDY/210// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
AMSNLOC/010930ZOCT/011000ZOCT/CVOA4/180// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
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TASKUNIT/LAKE CHAMPLAIN// 
MTGTLOC/P/22336651/TOT:010930ZOCT/NET:010915Z/NLT:010945Z/ID:TAA0123456 
/BLDG/T/3// 
MTGTLOC/A/11223344/TOT:010945ZOCT/NET:010930Z/NLT:011000Z/ID:TAA7890123 
/BLDG/T/3// 
MTGTLOC/P/22336652/TOT:010930ZOCT/NET:010915Z/NLT:010945Z/ID:TAA0134567 
/BLDG/T/3// 
MTGTLOC/A/11223345/TOT:010945ZOCT/NET:010930Z/NLT:011000Z/ID:TAA4561230 
/BLDG/T/3// 
SVCTASK/M// 
TASKUNIT/3MAW/ICAO:RDAH/04521-34552// 
AMSNDAT/N/0211D/-/-/-/FAC// 
MSNACFT/1/ACTYP:FA18C/SABER 11/2S2WG/TFLIR/-/-/-/B:20211/-/B:30211// 
ARINFO/GRAPE 11/4011A/B:34011/NAME:ORANGE TRACK/210/ARCT:010915Z/NDAR:010945ZOCT 
/KLBS:16.0/PFREQ:323.3/SFREQ:242.8/GE11/ACTYP:KC135/CDT/1/TNKR:1/29-92/3-3-4// 
AMSNLOC/010900ZOCT/012020ZOCT/CHEVY/170/2/ELL:100M-150M-240.0// 
REQNO/2M438C// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
CONTROLA/DASC/VAGABOND/PFREQ:121.5// 
ASUPTBY/SEAD/3MAW/0151H/HAMMER 51/HR51// 
8FACSCHD 
/MSNNO   /ATKACCS     /ATIME   /NO/ACTYPE   /WPNTY 
/0271A   /LUSTY 71    /010915Z / 2/AC:AV8B  /4MK82// 
AMSNDAT/N/0151H/-/-/-/SEAD// 
MSNACFT/2/ACTYP:FA18/HAMMER 51/2HARM/2S2WG/HR51/-/00112/B:20151/00113/B:30151// 
ARINFO/GRAPE 11/4011A/B:34011/NAME:ORANGE TRACK/200/ARCT:010815Z/NDAR:010845ZOCT 
/KLBS:30.0/PFREQ:323.3/SFREQ:242.8/GE11/ACTYP:KC135/CDT/3/TNKR:3/29-92/3-3-4// 
AMSNLOC/010950ZOCT/012010ZOCT/CHEVY/270// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
ASUPTFOR/XCAS/2MAW VMA-542/0271A/LUSTY 71/LY71// 
ASUPTFOR/FAC/3MAW/0211D/SABER 11// 
TASKUNIT/2MAW VMA-542/ICAO:KNKT// 
AMSNDAT/N/0271A/-/-/-/XCAS// 
MSNACFT/2/ACTYP:AV8B/LUSTY 71/4MK82/BEST/-/-/-/B:30271/-/B:30272// 
ARINFO/GRAPE 11/4011A/B:30115/NAME:ORANGE TRACK/200/ARCT:010900Z/NDAR:010930ZOCT 
/KLBS:10.0/PFREQ:323.3/SFREQ:242.8/GE11/ACTYP:KC135/CDT/3/TNKR:3/29-92/3-3-4// 
AMSNLOC/010915ZOCT/010945ZOCT/CHEVY/230/1// 
REQNO/2M438C// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
ASUPTBY/SEAD/3MAW/0151H/HAMMER 51/HR51// 
FACINFOR/SABER 11/PFREQ:227.5/SFREQ:311.3/-/NAME:CHEVY/1BN8MA// 
TASKUNIT/2MAW 2DRPVCO/ICAO:KNJM/03215-54236// 
AMSNDAT/F/0291B/-/-/-/REC// 
MSNACFT/1/OTHAC:PIONER/SEEKER 91/FLIR/-/SR91/-/00114/B:30271// 
RECCEDAT/P/PRI:2/010700ZOCT/NET:010645ZOCT/NLT:010715Z/LTIOV:011345ZOCT1998 
/FLR/PINPT/FL/IMQ:V/CM:C/C/ANA/-/12/12-1/12-2/12-3/12-4// 
PTRCPLOT/LATS:300105N0803428W/NAME:BLUE RIVER BRIDGE/RAD:1NM/150FT/WE// 
IMDATLNK/DESIG:PINK/CATCHER 23/LATM:3010N07930W/-/010700Z/010900Z// 
REQNO/4M201// 
TASKUNIT/2MAW HMM-365/ICAO:KNRR// 
AMSNDAT/N/020001/-/-/-/HLOG// 
MSNACFT/4/ACTYP:CH46E/PEDRO 01/-/-/-/-/-/B:30001/-/B:30004// 
AMSNLOC/010900ZOCT/011000ZOCT/-/15/1/-/NAME:NEW RIVER/NAME:CAMP DAVIS// 
REQNO/P297// 
CONTROLA/DASC/VAGABOND/PFREQ:121.5// 
ASUPTBY/ESC/2MAW HMLA-167/020005/SNAKE 05/SE05// 
LANDSTS/NAME:NEW RIVER/-/-/-/-/CONTACT:RIVER 11/RR11/PDESIG:DELTA// 
LANDSTS/NAME:CAMP DAVIS/HOT/301630Z/PANELS/ORANGE/CONTACT:DAVIS 11 
/-/PDESIG:DELTA// 
TASKUNIT/2MAW HMLA-167/ICAO:KNRR// 
AMSNDAT/N/020005/-/-/-/AH/ESC// 
MSNACFT/2/ACTYP:AH1W/SNAKE 05/FAMMO/2.75 ZUNI/-/-/-/B:30005/-/B:30006// 
ESCDATA/020001/04/ACTYP:CH46E/HLOG/-/010900Z/STANAME:NEW RIVER/011000Z 
/STPNAME:CAMP DAVIS/PEDRO 01/-/PFREQ:156.5/SFREQ:121.5// 
AMSNLOC/010900ZOCT/011000ZOCT/-/15/1/-/NAME:NEW RIVER/NAME:CAMP DAVIS// 
REQNO/P297// 
CONTROLA/DASC/VAGABOND/PFREQ:121.5// 
LANDSTS/NAME:NEW RIVER/-/-/-/-/CONTACT:RIVER 11/RR11/PDESIG:DELTA// 
LANDSTS/NAME:CAMP DAVIS/HOT/301630Z/PANELS/ORANGE/CONTACT:DAVIS 11 
/-/PDESIG:DELTA// 
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SVCTASK/F// 
TASKUNIT/4FW/ICAO:KMFG/03567-03677// 
POC/SMITH/LTC/21FS/LOC:KMFG/TEL:602-555-3377// 
AMSNDAT/N/0101E/-/AAF/MC/INT// 
MSNACFT/4/ACTYP:F15E/LIGHTNING 01/4XRF3/BEST/LG01/25/00111/B:20101 
/00112/B:31234// 
ARINFO/APPLE 20/4010A/B:34010/NAME:BLUE TRACK/200/ARCT:010830Z/NDAR:010900ZOCT 
/KLBS:30.0/PFREQ:343.3/SFREQ:277.8/AE20/ACTYP:KC10/BOM/2/TNKR:2/18-81/2-2-4// 
9PKGDAT 
/PKGID/UNIT                /MSNNO   /PMSN  /NO/ACTYPE   /ACSIGN 
/AAF  /4FW                 /0101E   /INT   / 4/AC:F15E  /LIGHTNING 01 
/AAF  /1FW                 /0121C   /FCAP  / 4/AC:F15C  /EAGLE 21// 
GTGTLOC/P/TOT:011000ZOCT/NET:010955ZOCT/NLT:011005Z/MAIN COMMAND 
CENTER/ID:N1234F12345AA001/CP/SOUTH COMPLEX 
/DMPIS:354738N0473815E/WE/257FT/A1497/1/DESTROY/AA135// 
REQNO/1F785I// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
PGMINFO/LC:1234// 
GTGTLOC/A/TOT:011020ZOCT/NET:010101ZOCT/NLT:011030Z/COMMAND BUNKER 
/ID:N1234F12367AB001/CP/CONCRETE BUNKER/DMPIS:354740N0473827E/WE 
/257FT/A1499/1/DESTROY/AA235// 
REQNO/1F796I// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
TASKUNIT/1FW/ICAO:LLKA// 
AMSNDAT/N/0121C/-/AAF/-/BRCAP/-/-/DEPLOC:LBNA/010715ZOCT/ARRLOC:LLKA 
/010815ZOCT// 
MSNACFT/4/ACTYP:F15C/EAGLE 21/2IR6RK/BEST/-/27/-/B:20121/-/B:31241// 
ARINFO/APPLE 20/4010A/B:34010/NAME:BLUE TRACK/200/ARCT:010845Z/NDAR:010900ZOCT 
/KLBS:30.0/PFREQ:343.3/SFREQ:277.8/AE20/ACTYP:KC10/BOM/2/TNKR:2/18-81/2-2-4// 
URMKREF/A// 
PKGCMD/AAF/4FW/0101E/LIGHTNING 01/LG01// 
AMSNLOC/011000ZOCT/011200ZOCT/SEIRAQ/260// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GOLD/SDESIG:BLUE/DR01/NAME:GINGER// 
GENTEXT/UNIT REMARKS/A:BARCAP FOR PACKAGE AAF// 
TASKUNIT/465ARS/ICAO:KKLS/00356-27453// 
AMSNDAT/N/4011A/-/-/-/AR// 
MSNACFT/1/ACTYP:KC135R/GRAPE 11/CLD/-/GE11/-/00113/B:24011/-/B:32221// 
AMSNLOC/010800ZOCT/011200ZOCT/ORANGE TRACK/200// 
REFTSK/CDT/KLBS:50.0/KLBS:20.0/PFREQ:323.3/SFREQ:242.8/29-92/3-3-4// 
5REFUEL 
/MSNNO   /RECCS       /NO/ACTYPE   /OFLD     /ARCT   /SEQ  /TYP  /ARS 
/0131D   /BEAK 31     / 2/AC:F14A  / KLB:20.0/010815Z/  A:1/A:JP8/CDT 
/0131D   /BEAK 33     / 2/AC:F14A  / KLB:20.0/010815Z/  A:1/A:JP8/CDT 
/0151H   /HAMMER 51   / 2/AC:FA18  / KLB:30.0/010815Z/  A:3/A:JP8/CDT 
/0211D   /SABER 11    / 1/AC:FA18C / KLB:16.0/010915Z/  A:1/A:JP8/CDT 
/0271A   /LUSTY 71    / 2/AC:AV8B  / KLB:10.0/010900Z/  A:1/A:JP8/CDT// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GREEN/SDESIG:WHITE/DR01/NAME:JIM// 
TASKUNIT/22ARW/ICAO:KNCY/00247-12345// 
AMSNDAT/N/4010A/-/-/-/AR// 
MSNACFT/1/ACTYP:KC10/APPLE 20/CWT/-/AE20/27/00114/B:24010/-/B:34440// 
AMSNLOC/010800ZOCT/011200ZOCT/BLUE TRACK/200// 
REFTSK/CDT/KLBS:105.0/-/PFREQ:343.3/SFREQ:277.8/18-81/2-2-4// 
5REFUEL 
/MSNNO   /RECCS       /NO/ACTYPE   /OFLD     /ARCT   /SEQ  /TYP  /ARS 
/0111I   /TALON 11    / 3/AC:A6E   / KLB:30.0/010815Z/  A:1/A:JP8/CDT 
/0171S   /CLAW 71     / 1/AC:EA6B  / KLB:20.0/010815Z/  A:2/A:JP8/CDT 
/0101E   /LIGHTNING 01/ 4/AC:F15E  / KLB:30.0/010830Z/  A:2/A:JP8/BOM 
/0121C   /EAGLE 21    / 4/AC:F15C  / KLB:30.0/010845Z/  A:2/A:JP8/BOM 
/0222C   /HEAVY 01    / 1/AC:B52   / KLB:30.0/011000Z/  A:1/A:JP8/BOM// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GREEN/SDESIG:WHITE/DR01/NAME:JIM// 
TASKUNIT/552ACW/ICAO:KNFA/02345-12342// 
AMSNDAT/N/AFC002/-/-/-/AEW// 
MSNACFT/1/ACTYP:E3A/SKYWATCH 43/-/-/SH43/35/00115/B:20123/-/B:30123// 
AMSNLOC/010600ZOCT/011500ZOCT/CONTROL RACETRACK/350// 
ASACSDAT/AWAC/DARKSTAR/AWACS/AEW/DR01/-/-/PDESIG:GREEN/SDESIG:WHITE// 
7CONTROL 
/MSNNO   /ACSIGN      /NO/ACTYPE   /MSNTY /TOSTA  /RIP 
/0111I   /TALON 11    / 3/AC:A6E   /INT   /010930Z/2840N08040W 
/0171S   /CLAW 71     / 1/AC:EA6B  /EW    /010945Z/2840N08040W 
/0131D   /BEAK 31     / 4/AC:F14A  /ESC   /010940Z/2840N08040W 
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/4020N   /PLUG 20     / 1/AC:S3B   /SUCAP /010810Z/2840N08040W 
/0211D   /SABER 11    / 1/AC:FA18C /FAC   /010920Z/2840N08040W 
/0151H   /HAMMER 51   / 2/AC:FA18  /SEAD  /010925Z/2840N08040W 
/4011A   /GRAPE 11    / 3/AC:KC135R/AR    /010800Z/2540N08240W 
/4010A   /APPLE 20    / 2/AC:KC10  /AR    /010805Z/2540N08240W 
/0101E   /LIGHTNING 01/ 4/AC:F15E  /INT   /011000Z/2650N08340W 
/0121C   /EAGLE 21    / 4/AC:F15C  /FCAP  /010945Z/2750N08345W 
/0222C   /HEAVY 01    / 1/AC:B52   /INT   /011100Z/3725N08921W 
/0271A   /LUSTY 71    / 2/AC:AV8B  /XCAS  /010915Z/2845N08050W// 
TASKUNIT/5BW/ICAO:KDZZ/02341-34561// 
AMSNDAT/N/0221B/-/-/-/OTR/-/-/DEPLOC:KNFA/010800ZOCT/ARRLOC:KDZZ/011800ZOCT// 
AMPN/MISSION IS TO DESTROY TWO ENEMY SHIPS ESCAPING FROM HARBOR// 
MSNACFT/2/ACTYP:B52H/MAUL 01/BEST/-/ML01/-/00116/B:20124/00117/B:30124// 
SHIPTGT/P/TOT:011030ZOCT/-/-/HOS/DD/-/-/1/-/SINK/292330Z 
/LATM:0123N04525E/-/260/10// 
SHIPTGT/A/TOT:011100ZOCT/-/-/HOS/FF/-/-/1/-/SINK/292330Z 
/LATM:0123N04525E/-/359/10// 
AMSNDAT/F/0222C/-/-/-/INT/-/-/DEPLOC:KNFA/011000ZOCT/ARRLOC:KDZZ/020630ZOCT// 
MSNACFT/1/ACTYP:B52H/HEAVY 01/CM/-/-/-/-/B:20127/-/B:30127// 
ARINFO/APPLE 20/4010A/B:34010/NAME:BLUE TRACK/200/ARCT:011000Z/NDAR:011015ZOCT 
/KLBS:30.0/PFREQ:343.3/SFREQ:277.8/AE20/ACTYP:KC10/BOM/2/TNKR:2/18-81/2-2-4// 
AMSNLOC/011045ZOCT/011115ZOCT/SWIRAQ/280// 
MTGTLOC/P/0222D/TOT:011100ZOCT/NET:011050Z/NLT:011110Z 
/ID:N1244F12467AB011/AFBASE/C/5/1/DESTROY// 
MTGTLOC/P/0222E/TOT:011115ZOCT/NET:011050Z/NLT:011120Z 
/ID:N1356F13567AB021/SSMHQ/C/3/2/DESTROY// 
CONTROLA/AWAC/DARKSTAR/PDESIG:GREEN/SDESIG:WHITE/DR01/NAME:JIM// 
TASKUNIT/314AW/ICAO:KDZZ// 
AMSNDAT/N/7001/AMC:0994XZ/-/-/TAL// 
MSNACFT/1/ACTYP:C130/PICKUP 01/PALLETS/-/-/-/-/B:20125/-/B:30125// 
AIRMOVE/1/AMC0994XA285/KNFA/B/-/-/ONN/011130Z/R35667/1B2// 
TRANSREQ/0994XA/ULN:178962A/01/-/-/2.0// 
AIRMOVE/2/AMC0994XB285/KLKA/B/-/011230ZOCT/DNN/011345Z/R48721/1B2// 
TRANSREQ/0994XB/ULN:178963B/-/02/-/1.5// 
AIRMOVE/3/AMC0994XC285/KNJM/B/-/011510ZOCT/BNN/011720Z/R44221/1B2// 
TRANSREQ/0994XC/ULN:178964C/-/03/-/.5// 
AIRMOVE/4/AMC0994XD285/KNKT/B/-/011830ZOCT/DNN/011900Z/R48900/1B1// 
TRANSREQ/0994XD/ULN:217863D/03/-/-/1.0/NO/K-LOADER// 
AIRMOVE/5/AMC0994XE285/KNFA/B/-/012000ZOCT/TNN// 
TASKUNIT/4DASC/NAME:BLUE LOCATION// 
ASACSDAT/DASC/VAGABOND/G29 RADIO/CMD/-/-/-/PFREQ:121.5// 
7CONTROL 
/MSNNO   /ACSIGN      /NO/ACTYPE   /MSNTY /TOSTA  /RIP 
/0211D   /SABER 11    / 1/AC:FA18C /FAC   /010900Z/2845N08045W 
/020001  /PEDRO 01    / 4/AC:CH46E /HLOG  /010830Z/2830N08000W 
/020005  /SNAKE 05    / 2/AC:AH1W  /ESC   /010830Z/2830N08200W// 
GENTEXT/GENERAL SPINS INFORMATION/THIS IS WHERE GENERAL INFORMATION IS PLACED// 
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Appendix D. TACOPDAT Message Example 

The following is an example TACOPDAT message taken from the USMTF 

Message Browser Help, 2004 Baseline edition [28]. 

EXER/BRAVE SHIELD 93// 
MSGID/TACOPDAT/AADC/1221001// 
EFFECTIV/12220700Z/2// 
8MOVAA 
/REF   /ZZPOS      /TIMPOS /CRS/SPD/AAWAX/ANGLE/CMNT 
/A001  /3000N07900W/220600Z/330/ 15/  350/  090 
/A002  /3030N08000W/221040Z/045/ 15/  350/  090 
/A003  /3110N07900W/221500Z/  -/  -/  350/  090// 
AAW/CVA-45/ALFA/350-ZZ-50// 
AAW/CUSHING/BRAVO/359-ZZ-100// 
AAW/CGN1700/CHARLIE/230-ZZ-25// 
GND/CRC0700/3320N09920W/351.2/308.1// 
GND/CRP0701/3510N10520W/296.2/315.1// 
GND/CRP0702/2900N10410W/326.2/286.1// 
GND/TAOC0600/3200N09615W/291.2/276.3// 
GND/Q730500/3520N10600W/TAD01/TAD02// 
GND/Q730501/3200N09206W/TAD03/TAD04// 
CAP/STA:JULIETT/ALT:225/-/-/AEW1/270-ZZ-240// 
CAP/STA:KILO/ALT:225/-/-/AEW2/350-ZZ-170// 
CAP/STA:LIMA/ALT:225/-/-/CRP1/3510N10620W// 
CAP/STA:MIKE/ALT:225/-/-/CRP2/2900N10455W/2900N10425W// 
CAP/STA:NOVEMBER/ALT:225/-/-/TAOC/3250N09615W// 
CAP/STA:OSCAR/ALT:225/-/-/E-3A1/3600N10600W// 
CAP/STA:PAPA/ALT:225/-/-/E-3A2/2800N10410W// 
CAP/STA:QUEBEC/ALT:225/329.2/341.6/B/359-ZZ-130// 
CAP/STA:ROMEO/ALT:225/316.0/249.3/C/220-ZZ-104// 
CAP/STA:SIERRA/ALT:H/249.0/315.6/A/280-ZZ-100// 
AEW/AEW1/MINALT:180/321.1/283.7/270-ZZ-250// 
AEW/AEW2/MINALT:180/302.1/283.7/350-ZZ-190// 
AEW/AEW3/MINALT:290/346.0/275.3/3350N09920W/3750N09920W// 
AEW/AEW4/MINALT:290/249.0/327.3/3940N10550W/3940N10710W// 
AUTOCAT/CINDY/MINALT:205/TX:265.2/REC:328.2/340-ZZ-80// 
AAR/STA:DRINK/ALTMN:185/ALTMX:200/289.2/316.4/270-ZZ-160// 
AAR/STA:FILLUP/ALTMN:190/ALTMX:205/277.7/333.3/350-ZZ-140// 
DUTY/CVA/1// 
DUTY/CRC/1S/6// 
DUTY/TAOC/1S/6// 
SURVEIL/S1/CVA-45/SECLIMIT:240T/SECLIMIT:340T// 
SURVEIL/S2/DDG-111/SECLIMIT:340T/SECLIMIT:120T// 
SURVEIL/S3/DLG/SECLIMIT:120T/SECLIMIT:240T// 
SURVEIL/S4/CRC/-/-/4000N09500W/2600N09500W/2600N12000W/4000N12000W 
/4000N09500W// 
AMPN/CRC DIVIDES THE AREA AMONG AIR FORCE PARTICIPANTS AND Q-731// 
SURVEIL/S5/TAOC/SECLIMIT:035M/SECLIMIT:083M// 
AMPN/TAOC HAS AREA WITHIN 200NM OF ITSELF ALONG WITH Q-732// 
NARR/DEFENSIVE RESPONSIBILITIES PARALLEL SURVEILLANCE AREAS// 
HANDO/CADILLAC/320-ZZ-120// 
HANDO/BUICK/010-ZZ-120// 
HANDO/OPEL/170-ZZ-120// 
HANDO/DODGE/260-ZZ-125// 
HANDO/FORD/4000N12000W// 
HANDO/CHEVY/2600N12000W// 
HANDO/OLDS/3300N10500W// 
HANDO/DATSUN/180-CVA-45// 
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MEZ/MEZ1/RAD:50NM/350-ZZ-50// 
MEZ/MEZ2/RAD:45NM/359-ZZ-100// 
MEZ/MEZ3/RAD:45NM/320-ZZ-25// 
MEZ/MEZ4/RAD:30NM/3520N10600W// 
MEZ/MEZ5/-/3100N09300W/3100N09100W/3300N09100W/3300N09300W 
/3100N09300W// 
SAFERAD/ALFA/RAD:50NM/CTRBRG:350/WDTH:060/-/UPALT:450/SPD:350 
/FROM:120600Z// 
SAFERAD/BRAVO/RAD:45NM/CTRBRG:270/WDTH:040/-/UPALT:430/SPD:400 
/FROM:120300Z// 
SAFERAD/CHARLIE/RAD:45NM/CTRBRG:240/WDTH:040/-/UPALT:440/- 
/FROM:120600Z/TO:141200Z// 
SAFECOR/SAFE1/WDTH:10NM/MINSPD:110KTSGS/MAXSPD:300KTSGS/LOALT:150 
/UPALT:230/-/-/ENTEXTPT:3130N09330W/ENTEXTPT:3130N09445W 
/270-CHN 85-40/090-CHN 85-40// 
SAFECOR/SAFE2/-/-/-/LOALT:130/UPALT:320/-/-/ENTEXTPT:3130N09000W 
/ENTEXTPT:3130N09300W/3130N09100W/3130N09200W// 
EMP/EMCON:B/FROM:220600Z/TO:230600Z// 
CTRLPT/APPLE/359-CVA-60/50// 
MARSH/UNCLE/300-CVA-50/CALLSIGN:PIRATE 01/263.0// 
SPDIS/B:32600/170/180-CVA-20// 
AKNLDG/YES// 
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Appendix E. STO Message Example 

The following is an example STO message taken from the USMTF Message 

Browser Help, 2004 Baseline edition [28]. 

EXER/GUARDIAN TIGER/97-2// 
MSGID/STO/COMAFSPACE/001// 
TIMEFRAM/FROM:100001ZOCT1998/TO:102359ZOCT1998// 
HEADING/TASKING// 
TSKCNTRY/US// 
SVCTASK/F// 
TASKUNIT/1SWS// 
SPACEMSN/WARNING// 
TASKSYS/ID:SEON/-/MSN:TECHNICAL INTELLIGENCE// 
TASKPER/FROM:101600ZOCT1998/TO:102230ZOCT1998// 
AREA/UTR 34321// 
GENTEXT/UNIT REMARKS/SUPPORT JTF-SWA OPERATION DURING BURNING WIND, 
REF UCCINCCENT MSG DTG 07099Z OCT 1997 FOR VOICE REPORTING 
CONSTRAINTS DIRLAUTH APPROVED// 
TASKUNIT/2SWS// 
SPACEMSN/WARNING// 
TASKSYS/ID:DSP/STRAT WARNING/MSNTYP:DIRSUP// 
TASKPER/FROM:100001ZOCT1998/TO:102359ZOCT1998// 
AREA/ATLANTIC (SLBM)/EAST (ICBM)/PACIFIC (SLBM)// 
GENTEXT/TASK SYSTEM REMARKS/DUPLEX FLT 23 AND FLT 34// 
TASKUNIT/50SW-4SOPS/NAME:FALCON// 
SPACEMSN/SATELLITE C2// 
TASKSYS/ID:MILSTAR/-/MSN:UHF COMM FLT1// 
TASKPER/FROM:100001ZOCT1998/TO:101300ZOCT1998// 
AREA/120W// 
GENTEXT/TASK SYSTEM REMARKS/ACTIVATE FLEET BROADCAST ON FLT1 FOR 
CONTINUOUS OPS IN SUPPORT OF GUARDIAN TIGER 97-2// 
TASKUNIT/50SW-6SOPS/NAME:FALCON// 
SPACEMSN/SPACE CONTROL// 
TASKSYS/ID:DMSP/-/MSN:WEATHER// 
SPACEOBJ/14352/3A// 
TASKPER/FROM:101001ZOCT1998/TO:171300ZOCT1998// 
GENTEXT/SPACE OBJECT REMARKS/ACTIVATE DMSP F-10 OPERATIONAL LINE 
SCANNER FOR 15 MINUTE DURATIONS OVER AOR// 
TASKUNIT/30 SW// 
SPACEMSN/SPACELIFT// 
TASKSYS/ID:TITAN IV/-/MSNTYP:LAUDEP// 
MSNSPEC/NATIONAL/10OCT1997/K-18// 
GENTEXT/UNIT REMARKS/CINCEUR REQUIRES PAYLOAD FOR STRATEGIC 
OPERATIONS ASAP// 
TASKUNIT/45 SW// 
SPACEMSN/SPACELIFT// 
TASKSYS/ID:DELTA II/-/MSNTYP:LAUSUS// 
MSNSPEC/GPS IIR2/15OCT1998// 
GENTEXT/TASK SYSTEM REMARKS/PREPARE IIR2 FOR IMMEDIATE LAUNCH TO 
REPLACE FAILING SVN XX// 
TASKUNIT/55SWXS// 
SPACEMSN/OTHER// 
GENTEXT/UNIT REMARKS/SHUTTLE SUPPORT - ENSURE NO PMI WILL INTERFERE 
WITH SUPPORT FROM 0900Z-1200Z 10OCT1997.  PRIORITIZATION UNTIL 
FURTHER NOTICE FOR AD HOC WX SUPPORT IS AS FOLLOWS; BOSNIA, KOREA, 
SWA// 



 

165 

Appendix F. OPTASK LINK Message Example 

The following is an example OPTASK LINK message taken from the USMTF 

Message Browser Help, 2004 Baseline edition [28]. 

OPER/PROVIDENT SWORD// 
MSGID/OPTASK LINK/CCG 7/0010/OCT// 
POC/JOHN COONTZ/CDR/ABRAHAM LINCOLN/LOC:LINCOLN/TEL:DSN525-1212 
/TEL:619-236-2223/EMAIL:COONTZ(AT)LINCOLN.NAVY.MIL// 
PERIOD/210001ZMAR/151200ZMAY// 
DLRPGRID/DLRP/L5/GPLLM:3600N12600W// 
AMPN/DLRP CHANGES WILL BE PROMULGATED VIA DAILY INTENTIONS// 
IVCCN/ADCCN/ST800Z1/P/ASGN:4010.5KHZ// 
IVCCN/DCN/DT607M1/P/ASGN:3030.0KHZ// 
CORRDEC/MAN/2.0/1.0/6/12/3/60/50/20/3/12/1.7/3// 
HEADING/MULTILINK INTERFACE COORDINATION REQUIREMENTS// 
GENTEXT/REGIONAL INTERFACE INFORMATION/THIS SET IS USED TO PROVIDE 
ADDITIONAL GUIDANCE WHEN REGIONAL MULTI-TADIL NETWORKS ARE REQUIRED. 
THE JICO WORKS CLOSELY WITH THE RICO IN PLANNING THE REGIONAL 
ARCHITECTURES// 
GENTEXT/SECTOR INTERFACE INFORMATION/THIS SET IS USED TO PROVIDE 
ADDITIONAL GUIDANCE WHEN SECTOR MULTI-TADIL NETWORKS ARE REQUIRED. 
THE JICO WORKS CLOSELY WITH THE SICO IN PLANNING THE SECTOR 
ARCHITECTURES// 
GENTEXT/CHANGE DATA ORDER AUTHORITIES/THIS GENTEXT SET PROVIDES 
AMPLIFYING GUIDANCE FOR IDENTIFICATION DIFFERENCE (ID) DIFFERENCE 
RESOLUTION PROCEDURES.  THE JICO MAY IN FACT PROMULGATE AN IDENTITY 
DIFFERENCE RESOLUTION TABLE THAT MIGHT VARY WITH THE AREA OF 
OPERATION// 
GENTEXT/COMMAND AUTHORITIES/THIS GENTEXT SET PROVIDES GUIDANCE AND 
DIRECTION TO C2 INTERFACE UNITS (IUS) WITH SPECIFIC COMMAND 
AUTHORITY.  ONLY THESE C2 UNITS WITH SPECIFIC COMMAND AUTHORITY SHALL 
ISSUE INTERFACE COMMANDS.  THE CJTF AND AADC ALWAYS HAVE COMMAND 
AUTHORITY.  THE CJTF OR AAD MAY DESIGNATE OTHER C2 IUS AS HAVING THE 
AUTHORITY TO ORIGINATE COMMAND WITHIN THE INTERFACE AS NECESSARY. 
THIS GUIDANCE WOULD BE PROMULGATE WITHIN THIS SET// 
GENTEXT/INTELLIGENCE LOCAL DISCRETE IDENTIFIER/INTELLIGENCE AND ES 
(J ONLY) LOCAL DISCRETE IDENTIFIERS (LDIS) ARE DECIMAL NUMBERS FROM 
1-4,094 THAT MAY BE DEFINED BY AN OPERATIONAL COMMANDER FOR ANY 
DESIRED PURPOSE RELATED TO INTELLIGENCE REPORTING OR EW OPERATIONS. 
LDIS ARE NOT THE SAME AS THE PLATFORM DISCRETE IDENTIFIER (DI) CODES 
USED BY THE U S NAVY.  THE DI CODES ARE OCTAL NUMBERS AND ARE A FORM 
OF SPECIAL CODE// 
GENTEXT/CONTINGENCY PROCEDURES/CONTINGENCY PROCEDURES FOR NON-DIGITAL 
DATA EXCHANGE.  THE PARTIAL OR COMPLETE LOSS OF THE TADIL INTERFACE 
IS ALWAYS A POSSIBILITY.  TO ENSURE THAT OPERATIONS ARE NOT AFFECTED 
BY PROLONGED OUTAGES, CONTINGENCY PROCEDURES OUTLINED IN THIS SECTION 
WOULD BE OUTLINED FOR EXCHANGING DATA IN A NON-DIGITAL FORM// 
INTCOORD/INTERFACE COORDINATION SEGMENT// 
AMPN/WHEN THE AREA OF RESPONSIBILITY (AOR) IS DIVIDED AND TWO OR MORE 
RICO/SICO(S) ARE DESIGNATED, COMMUNICATIONS CONNECTIVITY BETWEEN EACH 
OF THE RICO/SICO(S) AND THE ICO SHOULD BE IDENTIFIED.  THE ICO WILL 
SOLICIT INFORMATION FROM EACH DESIGNATED RICO/SICO CONCERNING THE 
TECHNICAL PARAMETERS THAT AFFECT THEIR OPERATION// 
MULCDUTY/SHIP:LINCOLN/FRANCIS/LCDR/ICO/TEL:619-437-1234 
/SECTEL:DSN553-1234/EMAIL:FRANCIS@LINCOLN.NAVY.MIL// 
IVCCN/DCN/AB234G/P/TEL:619-437-3456/TELTAC:555-1011// 
IVCCN/TSN/AB345A/P/TEL:619-437-6543/TELTAC:555-2314// 
MULCDUTY/SHIP:CHOSIN/JOSEFOSKY/LT/RICO/TEL:619-553-8916// 
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IVCCN/DCN/AG342H/P/TEL:619-553-8756/TELTAC:456-2345// 
GENTEXT/MULTILINK COORDINATION DETAILS/TO SUPPORT JTF OPERATIONS THE 
MULTI-TADIL AREA OF OPERATIONS (AO) MAY BE SUB-DIVIDED INTO REGIONS 
AND SECTORS.  IN CASES WHERE REGIONS AND SECTORS ARE EMPLOYED, 
REGIONAL ICO'S (RICO) AND SECTOR ICO'S (SICO) WILL BE ASSIGNED AND 
ARE GOVERNED BY THE SAME TECHNIQUES AND PROCEDURES OF THE JICO. 
GOVERNING COORDINATION INSTRUCTIONS WILL BE PROMULGATED IN THIS 
SECTION// 
GENTEXT/WEB COORDINATION/IN THE PLANNING AND PREPARATION PHASES OF 
THE OPERATION, THE ICO MAY ELECT TO UTILIZE A WEB PAGE FOR 
COORDINATION OF A PORTION OF THE OPERATION AND THIS AREA IS DESIGNED 
TO SUPPORT THOSE REQUIREMENTS// 
LNKIV/LINK 4 SEGMENT// 
LKIVADDR/UNIT:LINCOLN/ADD:01245// 
LKIVADDR/UNIT:CHOSIN/ADD:01237// 
LKIVADDR/UNIT:VF-43/BLOCK:02000-02022// 
LKFREQC/LINCOLN/DESG1234/ASGN:234.5MHZ// 
LKFREQC/CHOSIN/DESG2345/ASGN:245.6MHZ// 
LNKXI/LINK 11 SEGMENT// 
LSYSDATA/13-9/ON/A2/SLEW// 
CRYPTDAT/AKAI1238/AMAS23/KG-40/AMASL6789/2345Z// 
DALKFREQ/DATA/FD:DATA01/ASGN:3037.5KHZ/P/B7D/D// 
DALKFREQ/DATA/FD:AC11/ASGN:2.2440MHZ/P/B7D// 
DALKFREQ/DATA/FD:AC11/ASGN:9.5770MHZ/S/B7D// 
DALKFREQ/DATA/FD:AC11A/ASGN:398.3MHZ/P/F2D// 
DALKFREQ/DATA/FD:AC11A/ASGN:395.4MHZ/S/F2D// 
FORCFLTR/M1/ALL/-/-/-/SR// 
FORCFLTR/M2/ALL/-/-/-/AL// 
LPUDATA/SHIP:LINCOLN/CS:L/PU:66/BLOCK:1000-1376/-/83/84/85/88/804// 
LPUDATA/SHIP:CHOSIN/CS:Q/PU:65/BLOCK:2000-2776/-/81/83S/84S/806// 
LPUDATA/SHIP:BUNKER HILL/CS:K/PU:23/BLOCK:3000-3576/-/83S/84S// 
LPUDATA/SHIP:JONES/CS:B/PU:53/BLOCK:4000-4776// 
LNKXIB/LINK 11B SEGMENT// 
CRYPTDAT/AKAK1238/AMAS23/KG-84/AMASL6789/2345Z// 
LRULINK/RUNO:140/RUNO:145/2400/PRI/LTD// 
LRULINK/RUNO:150/RUNO:155/2400/PRI/LTD// 
LRULINK/RUNO:101/RUNO:105/2400/ALT/FTD// 
LRULINK/RUNO:130/RUNO:136/2400/ALT/FTD// 
DALKFREQ/DATA/FD:DATA01/ASGN:3037.5KHZ/P/B7D/D// 
FORCFLTR/FAB28/ALL/-/STATIC/-/SR// 
LRUDATA/UNIT:1-1 BN/CS:FANG/RU:155/4400-5300// 
LRUDATA/UNIT:1-2 BN/CS:CLAW/RU:146/5500-5600// 
LRUDATA/UNIT:1-3 BN/CS:BLACKCREEK/RU:125/5600-5700// 
UNITFLTR/A14/ALL/-/STATIC/-/SR// 
NARR/ALL ALTERNATE LINKS WILL BE ACTIVATED BY ICO// 
LNKXVI/LINK 16 SEGMENT// 
JNETWORK/ACDO0002A/232/09DEC2001/017/PRI// 
CPD/12SEP2002/1// 
JCRYPDAT/1/USKAT-9017/-/0/-/1// 
JTRNMODE/TEST2/OFF/NOR/MODE 1// 
JSTNETS/CNTRL/19/123/DECATUR// 
JSTNETS/SFTF/19/039/VF31// 
FORCFLTR/FAB28/ALL/9/STATIC/-/SR// 
FORCFLTR/M1/ALL/-/SLAVED/APD:XX/AL// 
GENTEXT/FORCE FILTER SUMMARY/FILTER M1 IS THE RECTANGLE MARSHALL AREA 
OF THE CARRIER.  DURING CVN RECOVERY, ALL UNITS (IF CAPABLE) WILL 
TRANSMIT FILTER ALL FRIENDLY TRACK AROUND CVN (INCLUDING MARSHALL). 
FILTER SHOULD BE SET AS FOLLOWS DEPENDING ON CASE RECOVERY: CASE I, 
XY COORD FILTER CENTERED ON CVN/20NM AHEAD AND 20NM RECIPROCAL OF 
BASE RECOVERY COURSE/15NM ON EITHER SIDE OF CVN.  CASE II/III, XY 
COORD FILTER CENTERED ON CVN/10NM AHEAD AND 35 NM (OR REQUIRED 
DISTANCE TO INCLUDE MARSHALL) ON RECIPROCAL OF BASE RECOVERY COURSE/ 
15NM ON EITHER SIDE OF CVN.  UNITS UNABLE TO FILTER XY AND OPERATING 
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IN CLOSE PROXIMITY TO CVN (WITHIN 75NM) WILL SWITCH TO RCV-ONLY OR 
TRANSMIT INHIBIT TRACKS IN VICINITY OF THE CVN DURING LAUNCH/RECOVERY 
CYCLES// 
JUDATA/SHIP:LINCOLN/-/-/PRI:00062/16/BLOCK:00500-00700/-/SHIP(4)/12 
/NORM/0200/PRI/Y// 
JCNTROPT/2/1// 
LKSXDUTY/820/821/823// 
JUDATA/SHIP:CHOSIN/-/-/PRI:00023/16/BLOCK:00300-00400/-/SHIP(5)/13 
/NORM/0200/PRI/Y// 
JCNTROPT/2/2// 
LKSXDUTY/823// 
JUDATA/SHIP:BUNKER HILL/-/-/PRI:00042/16/BLOCK:00100-00200/-/SHIP(6) 
/14/NORM/0200/PRI/Y// 
JCNTROPT/2/3// 
LKSXDUTY/825S/823S// 
JUDATA/SHIP:JONES/-/-/PRI:00022/16/BLOCK:00200-00300/-/SHIP(7)/15 
/NORM/0200/PRI/Y// 
JCNTROPT/2/4// 
LKSXDUTY/821S// 
LNKSAT/SATELLITE LINK 16 SEGMENT// 
DAMA/34256/34/4800BPS// 
SATINFOJ/23/CHAN45/345.78MHZ/34// 
CRYPSATJ/KG-84/AMALS6789// 
LNKJPADD/SHIP:LINCOLN/-/PU:62/BLOCK:0300-0400/C2P/YES/NO// 
SPECTRK/LXVI:AB345/SAM SITE CHARLIE// 
SPECTRK/LXVI:AB456/RADAR SITE ALPHA//  
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Appendix G. Sample GAMS Model Code for Polymorphic Networking 

This is an example copy of the GAMS file whose model, when solved, generates 

a polymorphic network. The characteristics of the network are placed into three separate 

files that get included into the master file (polynet3.gms) at compile time. The listing 

below shows the results of the inclusion. In this case the network has three nodes, with 

two interface types, and three commodities (out of a maximum of six). Such a small 

network has been chosen for an example to keep the length of the listing to a reasonable 

size. The values in the tables are for the most part randomly generated at when the 

include files are generated. Tables that get filled in after solutions are found are initially 

set to all zeroes. Lines that begin with ‘*’ and all text after ‘!!’ are comments. Texts 

within quotation marks are descriptions of objects. The command line GAMS call is: 

gams polynet3.gms --MyFile=main_3_3_2 --MyOutFile=3_3_2_0.data pw=170 o=3_3_2_0.lst nodlim=20000000 mip=COINCBC 

 

Here ‘--MyFile=main_3_3_2’ sets the variable naming the main included file. The other 

two included files are referenced within the main_3_3_2 file. The ‘_3_3_2’ in the file 

name indicates the number of nodes, commodities, and interface types for the network. 

The argument ‘--MyOutFile=3_3_2_0.data’ sets the variable for the filename to which 

specialized output is saved, as specified in the model code. The ‘0’ in the filename 

indicates that this is case 0 in a set of multiple runs. The argument ‘pw=170’ sets the page 

width of the listing file to 170 characters. The argument ‘o=3_3_2_0.lst’ sets the filename 

for the GAMS listing file. The argument ‘nodlim=20000000’ sets the node limit for 

mixed integer programming. Finally, the argument ‘mip=COINCBC’ tells GAMS to use 

COINCBC as the solver. The model code now follows. 
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$title “Polymorphic networking” !! Sets title in page header of the listing file 
$oneolcom oninline offinclude onglobal  !! Turn on eol and inline comments, turn off listing of 

!! include file names, force inheritance of parent file settings 
* $offlisting    !! prevents echoing of input file into output file 
* $onsymlist     !! turn on symbol listing 
* $onsymxref     !! turn on symbol cross reference listing 
* $onuellist     !! turn on unique element listing 
* $onuelxref     !! turn on unique element cross reference 
 
File MyFile    "Input file for network characteristics";  !! To be assigned in command line gams call 
$if not set MyFile $abort “>>> TOO FEW ARGUMENTS <<<” 
File MyOutFile "Output file for network characteristics"; !! To be assigned in command line gams call 
$if not set MyOutFile $abort “”>>> TOO FEW ARGUMENTS <<<” 
Put MyOutFile;                           !! Assigns MyOutFile as current file written to 
MyOutFile.nw = 0;                        !! Sets the numeric field width to be variable 
MyOutFile.lw = 0;                        !! Sets the label field width to be variable 
MyOutFile.nd = 4;                        !! Sets the number of decimals to 4 
    
Scalar NumNodes       "The number of nodes in the network" /3/ 
       NumInterfaces  "The number of interface types"      /2/ 
       NumCommodities "The number of commodities"          /3/ 
    
Sets TableHeader1 "Headers for SourceDest"  /"source", "dest", "bandwidth"/ 
     TableHeader2 "Header for Hops"         /"hops"/ 
     Nodes        "Set of node labels"      /1*3/     !! 1 through NumNodes 
     Interfaces   "Set of interfaces"       /1*2/     !! 1 through NumInterfaces 
     Commodities  "Set of commodity labels" /1*3/;    !! 1 through NumCommodities 
    
Alias (Nodes, Nodes2);           !! Allows one to doubly index over set of nodes to form edges 
    
Table NodeInterfaces(Nodes, Interfaces) "Table listing the number of each type of interface at each node" 
        1       2 
1       4       2 
2       2       2 
3       2       4; 
    
Table SourceDest(Commodities, TableHeader1) "Table of source, destination, and required bandwidth for each commodity" 
        source  dest    bandwidth 
1       1       2       4 
2       2       1       12 
3       1       3       7; 
    
Table r(Nodes, Commodities) "Used to help define ConserveFlow equation" 
        1       2       3 
1       1       -1      1 
2       -1      1       0 
3       0       0       -1; 
    
Table Hops(Commodities, TableHeader2) "Table of number of hops for each commodity" !! Filled in after solution found 
        hops 
1       0 
2       0 
3       0; 
 
Table FCost(Nodes, Nodes2, Interfaces) "Table of fixed costs for each directed edge (i,j,f)" 
        1       2 
1.2     9       9 
1.3     9       10 
2.1     8       8 
2.3     5       8 
3.1     5       5 
3.2     10      10; 
    
Table A(Nodes, Nodes2, Interfaces) "Table of arc possibilities (node incidence matrix)" 
        1       2 
1.2     1       1 
1.3     0       1 
2.1     1       1 
2.3     1       1 
3.1     0       1  
3.2     1       1; 
    
Table Yold(Nodes, Nodes2, Interfaces) "Whether or not edge (i,j,f) was included in previous topology" 
        1       2 
1.2     0       0 
1.3     0       0 
2.1     0       0 
2.3     0       0 
3.1     0       0 
3.2     0       0; 
    
Table Cap(Nodes, Nodes2, Interfaces) "Table of arc capacities" 
        1       2 
1.2     3       5 
1.3     3       4 
2.1     6       6 
2.3     5       4 
3.1     3       5 
3.2     6       4; 
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Table VarCost(Nodes, Nodes2, Interfaces, Commodities) "Table giving cost for 100% of commodity j to flow on (i, j, f)" 
        1       2       3 
1.2.1   9       9       12 
1.2.2   7       15      8 
1.3.1   15      7       14 
1.3.2   13      13      12 
2.1.1   13      15      10 
2.1.2   8       10      13 
2.3.1   15      14      8 
2.3.2   7       7       11 
3.1.1   7       9       7 
3.1.2   8       9       14 
3.2.1   10      11      13 
3.2.2   7       8       9; 
    
Table AddCost(Nodes, Nodes2, Interfaces, Commodities) "Table giving additional cost for 100% of commodity j to flow on 
(i, j, f)" 
        1       2       3 
1.2.1   0       0       0 
1.2.2   0       0       0 
1.3.1   0       0       0 
1.3.2   0       0       0 
2.1.1   0       0       0 
2.1.2   0       0       0 
2.3.1   0       0       0 
2.3.2   0       0       0 
3.1.1   0       0       0 
3.1.2   0       0       0 
3.2.1   0       0       0 
3.2.2   0       0       0; 
    
Table Xold(Nodes, Nodes2, Interfaces, Commodities) "Previous percentage of commodity k to flow on (i, j, f)" 
        1       2       3 
1.2.1   0       0       0 
1.2.2   0       0       0 
1.3.1   0       0       0 
1.3.2   0       0       0 
2.1.1   0       0       0 
2.1.2   0       0       0 
2.3.1   0       0       0 
2.3.2   0       0       0 
3.1.1   0       0       0 
3.1.2   0       0       0 
3.2.1   0       0       0 
3.2.2   0       0       0; 
    
set Sold(Commodities) "Whether or not commodity k was dropped in previous topology" 
/1      0 
 2      0 
 3      0/; 
    
Scalar Diameter           "Maximum number of hops among all commodities"                              /0/ 
       AvgNumHops         "Average number of hops per commodity"                                      /0/  
       DroppedCommodities "How many commodities were dropped to achieve feasibility"                  /0/ 
       Difference         "Measurement of difference between current solution and previous soloution" /0/ 
       Timer              "Keeps track of how long solve times take" 
       DeltaTime          "Actual elapsed time for a solve"; 
    
Variables tot  "Total cost of designing and routing network" 
          fix  "Fixed cost of designing network" 
          var  "Variable cost for routing choice" 
          addl "Additional cost for routing choice"; 
    
Positive Variables X(Nodes, Nodes2, Interfaces, Commodities) "Percentage of commodity k to flow on (i,j,f)"; 
X.up(Nodes, Nodes2, Interfaces, Commodities) = A(Nodes, Nodes2, Interfaces); 
    
Binary Variables Y(Nodes, Nodes2, Interfaces) "Decision variable for whether edge (i,j,f) is included in topology" 
                 S(Commodities)               "Decision variable for whether commodity k should be dropped"; 
 
Equations  !! Declare equations 
    TotalCost                        "Total cost of the network" !! Objective function 
    FixedCost                        "Construction cost"         !! Cost from including each edge 
    VariableCost                     "Routing cost"              !! Cost from routing commodities 
    AdditionalCost                   "Additional routing cost"   !! Penalty cost to inhibit repeating topologies 
    ConserveFlow(Nodes, Commodities) "Flow balance equations"    !! Flow in = Flow out unless source or destination 
    LinkCapacity(Nodes, Nodes2, Interfaces) "Link capacity constraints"   !! Only send flow that an edge can handle 
    Degree(Nodes, Interfaces)               "Interface constraints"       !! Don’t exceed a node’s number of interfaces 
    Forcing(Nodes, Nodes2, Interfaces, Commodities) "Forcing constraints" !! X(i,j,f,k) <= Y(i,j,f) 
    Inclusion(Nodes, Nodes2, Interfaces)    "Inclusion constraints"       !! Y(i,j,f) <= A(i,j,f) 
    Bidirection(Nodes, Nodes2, Interfaces)  "Bidirectional constraints";  !! if (i,j,f) exists, then so should (j,i,f) 
 
!! Define equations 
TotalCost .. tot =e= fix + var + addl + sum(Commodities, 1000*SourceDest(Commodities, "bandwidth")*S(Commodities)); 
FixedCost .. fix =e= sum((Nodes, Nodes2, Interfaces), Y(Nodes, Nodes2, Interfaces)*FCost(Nodes, Nodes2, Interfaces)); 
VariableCost .. var =e= sum((Nodes, Nodes2, Interfaces, Commodities), X(Nodes, Nodes2, Interfaces, Commodities)* _ 
    VarCost(Nodes, Nodes2, Interfaces, Commodities)); 
AdditionalCost .. addl =e= sum((Nodes, Nodes2, Interfaces, Commodities), X(Nodes, Nodes2, Interfaces, Commodities)* _ 
    AddCost(Nodes, Nodes2, Interfaces, Commodities)); 
ConserveFlow(Nodes, Commodities) .. sum((Nodes2, Interfaces),X(Nodes, Nodes2, Interfaces, Commodities))- _ 
    sum((Nodes2, Interfaces),X(Nodes2, Nodes, Interfaces, Commodities)) =e= r(Nodes, Commodities)*(1-S(Commodities)); 
LinkCapacity(Nodes, Nodes2, Interfaces) .. sum(Commodities, X(Nodes, Nodes2, Interfaces, Commodities)* _ 
    SourceDest(Commodities, "bandwidth")) =l= Cap(Nodes, Nodes2, Interfaces); 
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Degree(Nodes, Interfaces) .. sum(Nodes2, Y(Nodes, Nodes2, Interfaces)) =l= NodeInterfaces(Nodes, Interfaces); 
Forcing(Nodes, Nodes2, Interfaces, Commodities) .. X(Nodes, Nodes2, Interfaces, Commodities) =l= _ 
    Y(Nodes, Nodes2, Interfaces); 
Inclusion(Nodes, Nodes2, Interfaces)            .. Y(Nodes, Nodes2, Interfaces) =l= A(Nodes, Nodes2, Interfaces); 
Bidirection(Nodes, Nodes2, Interfaces)          .. Y(Nodes, Nodes2, Interfaces) =e= Y(Nodes2, Nodes, Interfaces); 
 
!! Define model and set options 
Model net /all/; 
net.optcr = 0;                                  !! relative termination criteria for MIP 
Option limrow = 0;                              !! Larger values let you see more results in the output file 
Option limcol = 0;                              !! Larger values let you see more results in the output file 
Option solprint = off;                          !! Turning on lets you see more results in the output file 
Option iterlim = 2000000000;          !! Number of solver iterations (as high as possible) 
Option reslim = 100000000;                      !! Amount of solver time in seconds (as high as possible) 
    
Put "# Solving initial network", ": Elapsed time "; 
 
!! Solve model while timing 
Timer = timeelapsed; 
Solve net using mip minimizing tot;             !!***********SOLVE STATEMENT HERE!!! 
DeltaTime = timeelapsed - timer; 
Put DeltaTime /; 
    
Loop((Nodes, Nodes2, Interfaces, Commodities)$(X.l(Nodes, Nodes2, Interfaces, Commodities)>0), 
    Put Nodes.tl "." Nodes2.tl "." Interfaces.tl "." Commodities.tl; 
    Put , "  ", X.l(Nodes, Nodes2, Interfaces, Commodities) /; 
); 
    
Loop((Nodes, Nodes2, Interfaces, Commodities)$(X.l(Nodes, Nodes2, Interfaces, Commodities) > 0), 
    Hops(Commodities, "hops") = Hops(Commodities, "hops") + 1; 
    AddCost(Nodes, Nodes2, Interfaces, Commodities) = AddCost(Nodes, Nodes2, Interfaces, Commodities) + _ 
        X.l(Nodes, Nodes2, Interfaces, Commodities); 
); 
 
!! Count the number of dropped commodities 
Loop((Commodities)$(S.l(Commodities) > 0), DroppedCommodities = DroppedCommodities + 1;); 
    
Diameter = smax(Commodities, Hops(Commodities, "hops")); 
AvgNumHops = sum(Commodities, Hops(Commodities, "hops"))/(NumCommodities-DroppedCommodities); 
     
Put "Total cost: ", tot.l /; 
Put "True cost: ", (tot.l - addl.l) /; 
Display X.l, Y.l, S.l, Hops, Diameter, AvgNumHops, DroppedCommodities, fix.l, var.l, addl.l, tot.l; 
    
!! Prepare for the next iteration 
DroppedCommodities = 0; 
Loop((Commodities), 
    Hops(Commodities, "hops") = 0; 
    Sold(Commodities) = S.l(Commodities); 
    Loop((Nodes, Nodes2, Interfaces), 
        Yold(Nodes, Nodes2, Interfaces) = Y.l(Nodes, Nodes2, Interfaces); 
        Xold(Nodes, Nodes2, Interfaces, Commodities) = X.l(Nodes, Nodes2, Interfaces, Commodities); 
    ); 
); 
 
Model polynet1 /all/;   !! Define model 
polynet1.optcr = 0;             !! relative termination criteria for MIP 
    
Scalar count; count = 1;        !! declare and initialize loop control variable 
Scalar limit; limit = 9;        !! declare and initialize loop limit variable 
While((count le limit), 
    MyOutFile.nd = 0; 
    Put /, "# Solving polynet ", count, " of ", limit, ": Elapsed time "; 
    MyOutFile.nd = 4; 
    
    !! Solve model while timing 
    Timer = timeelapsed; 
    Solve polynet1 using mip minimizing tot;        !!***********SOLVE STATEMENT HERE!!! 
    DeltaTime = timeelapsed - timer; 
    Put DeltaTime /; 
 
    Loop((Nodes, Nodes2, Interfaces, Commodities)$(X.l(Nodes, Nodes2, Interfaces, Commodities)>0), 
        Put Nodes.tl "." Nodes2.tl "." Interfaces.tl "." Commodities.tl; 
        Put , "  ", X.l(Nodes, Nodes2, Interfaces, Commodities) /; 
    ); 
 
    !! Count number of hops for each commodity, diameter, and average number of hops and increase AddCost 
    Loop((Nodes, Nodes2, Interfaces, Commodities)$(X.l(Nodes, Nodes2, Interfaces, Commodities) > 0), 
        Hops(Commodities, "hops") = Hops(Commodities, "hops") + 1; 
        AddCost(Nodes, Nodes2, Interfaces, Commodities) = AddCost(Nodes, Nodes2, Interfaces, Commodities) + _ 
            X.l(Nodes, Nodes2, Interfaces, Commodities); 
    ); 
    
    !! Count the number of dropped commodities 
    Loop((Commodities)$(S.l(Commodities) > 0), DroppedCommodities = DroppedCommodities + 1;); 
    
    Diameter = smax(Commodities, Hops(Commodities, "hops")); 
    AvgNumHops = sum(Commodities, Hops(Commodities, "hops"))/(NumCommodities-DroppedCommodities); 
    Difference = sum((Commodities),SourceDest(Commodities, "bandwidth")*sum((Nodes, Nodes2, Interfaces), _ 
        abs(X.l(Nodes, Nodes2, Interfaces, Commodities)-Xold(Nodes, Nodes2, Interfaces, Commodities))))/ _ 
        (sum((Commodities),SourceDest(Commodities, "bandwidth"))*sum((Nodes, Nodes2, Interfaces), _ 
        (Y.l(Nodes, Nodes2, Interfaces)+Yold(Nodes, Nodes2, Interfaces))/2)); 
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    Put "Total cost: ", tot.l /; 
    Put "True cost: ", (tot.l - addl.l) /; 
    Put "Difference ", Difference /; 
    Display X.l, Xold, Y.l, Yold, S.l, Sold, Hops, Diameter, AvgNumHops, DroppedCommodities, Difference; 
    Display fix.l, var.l, addl.l, tot.l; 
    
    !! Prepare for the next iteration 
    DroppedCommodities = 0; 
    Loop((Commodities), 
        Hops(Commodities, "hops") = 0; 
        Sold(Commodities) = S.l(Commodities); 
        Loop((Nodes, Nodes2, Interfaces), 
            Yold(Nodes, Nodes2, Interfaces) = Y.l(Nodes, Nodes2, Interfaces); 
            Xold(Nodes, Nodes2, Interfaces, Commodities) = X.l(Nodes, Nodes2, Interfaces, Commodities); 
        ); 
    ); 
    
    count = count + 1; 
); 
    
putclose MyOutFile;     !! Close MyOutFile output file prior to ending program 
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Appendix H. Sample Polymorphic Network 

The following data shows the results of a sample GAMS run to create a 

polymorphic network consisting of five nodes, each with four interfaces. Every 

conceivable edge is allowed. There are five commodities, one for each node. The 

destination for the commodity from node ݊ is node ሺ݊ ൅ 1ሻ ݉5 ݀݋. All fixed and 

variable costs are set to 1. The capacity of every edge is 100 Kbps and each commodity 

has a required bandwidth of 10 Kbps. An initial (optimal) network topology is found 

followed by nine polymorphisms. The results shown here come from the MyOutFile 

mentioned in Appendix G and list every edge that has traffic flowing on it. The format is 

‘(from node).(to node).(interface).(commodity)  (% of flow)’. The time to solve is listed 

along with the total cost and true cost of the network. Note that solution times vary from 

20.4430 seconds to 295.1990 seconds. Measured differences range from 0.2000 to 

0.4000. True costs range from the optimal 15.0000 of the first topology to 16.0000 for 6 

of the 9 subsequent topologies. 

 
 
# Solving initial network: Elapsed time 60.2210 
1.2.2.1  1.0000 
2.3.4.2  1.0000 
3.4.3.3  1.0000 
4.5.1.4  1.0000 
5.1.4.5  1.0000 
Total cost: 15.0000 
True cost: 15.0000 
 
# Solving polynet 1 of 10: Elapsed time 46.0010 
1.2.3.1  1.0000 
2.3.2.2  1.0000 
3.4.1.3  1.0000 
4.5.3.4  1.0000 
5.1.2.5  1.0000 
Total cost: 15.0000 
True cost: 15.0000 
Difference 0.2000 



 

174 

# Solving polynet 2 of 10: Elapsed time 28.1230 
1.2.4.1  1.0000 
2.3.1.2  1.0000 
3.4.4.3  1.0000 
4.5.2.4  1.0000 
5.1.1.5  1.0000 
Total cost: 15.0000 
True cost: 15.0000 
Difference 0.2000 
 
# Solving polynet 3 of 10: Elapsed time 23.8390 
1.2.1.1  1.0000 
2.3.3.2  1.0000 
3.4.2.3  1.0000 
4.5.4.4  1.0000 
5.1.3.5  1.0000 
Total cost: 15.0000 
True cost: 15.0000 
Difference 0.2000 
 
# Solving polynet 4 of 10: Elapsed time 295.1990 
1.3.1.1  1.0000 
2.3.2.2  1.0000 
3.1.1.5  1.0000 
3.2.2.1  1.0000 
3.5.4.3  1.0000 
4.5.2.4  1.0000 
5.3.4.5  1.0000 
5.4.2.3  1.0000 
Total cost: 18.0000 
True cost: 16.0000 
Difference 0.2889 
 
# Solving polynet 5 of 10: Elapsed time 242.0370 
1.3.3.1  1.0000 
1.4.4.3  1.0000 
2.3.4.2  1.0000 
3.1.3.3  1.0000 
3.2.4.1  1.0000 
4.1.4.5  1.0000 
4.5.1.4  1.0000 
5.4.1.5  1.0000 
Total cost: 18.0000 
True cost: 16.0000 
Difference 0.4000 
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# Solving polynet 6 of 10: Elapsed time 171.6240 
1.2.2.1  1.0000 
2.1.2.5  1.0000 
2.5.1.2  1.0000 
3.4.2.3  1.0000 
3.5.3.4  1.0000 
4.3.2.4  1.0000 
5.2.1.5  1.0000 
5.3.3.2  1.0000 
Total cost: 18.0000 
True cost: 16.0000 
Difference 0.4000 
 
# Solving polynet 7 of 10: Elapsed time 20.4430 
1.4.2.1  1.0000 
2.3.3.2  1.0000 
2.4.4.3  1.0000 
3.2.3.3  1.0000 
4.1.2.5  1.0000 
4.2.4.1  1.0000 
4.5.3.4  1.0000 
5.4.3.5  1.0000 
Total cost: 18.0000 
True cost: 16.0000 
Difference 0.4000 
 
# Solving polynet 8 of 10: Elapsed time 97.8190 
1.2.4.1  1.0000 
2.1.4.5  1.0000 
2.4.1.2  1.0000 
2.5.2.4  1.0000 
3.4.3.3  1.0000 
4.2.1.4  1.0000 
4.3.3.2  1.0000 
5.2.2.5  1.0000 
Total cost: 18.0000 
True cost: 16.0000 
Difference 0.4000 
 
# Solving polynet 9 of 10: Elapsed time 68.3950 
1.4.4.1  1.0000 
1.5.2.4  1.0000 
2.3.1.2  1.0000 
2.4.2.3  1.0000 
3.2.1.3  1.0000 
4.1.4.4  1.0000 
4.2.2.1  1.0000 
5.1.2.5  1.0000 
Total cost: 18.0000 
True cost: 16.0000 
Difference 0.4000 
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Appendix I. Interval Plots for Scenario 1 

The following interval plots show the 95% confidence intervals (CI) for the mean 

percentages of packets dropped at the router for Scenario 1 (no NTO). Each plot shows 

the 95% CI for packets from a single source (S1or S2) of a fixed size broken down by the 

sizes for the packets that come from the opposing source (S2 or S1, respectively). 
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Figure 45: 95% CI for mean % of 8-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 46: 95% CI for mean % of 16-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 47: 95% CI for mean % of 24-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 48: 95% CI for mean % of 32-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 49: 95% CI for mean % of 40-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 50: 95% CI for mean % of 48-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 51: 95% CI for mean % of 56-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 52: 95% CI for mean % of 64-B S1 packets dropped in Scenario 1 (no NTO) 
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Figure 53: 95% CI for mean % of 8-B S2 packets dropped in Scenario 1 (no NTO) 
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Figure 54: 95% CI for mean % of 16-B S2 packets dropped in Scenario 1 (no NTO) 
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Figure 55: 95% CI for mean % of 24-B S2 packets dropped in Scenario 1 (no NTO) 
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Figure 56: 95% CI for mean % of 32-B S2 packets dropped in Scenario 1 (no NTO) 
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Figure 57: 95% CI for mean % of 40-B S2 packets dropped in Scenario 1 (no NTO) 
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Figure 58: 95% CI for mean % of 48-B S2 packets dropped in Scenario 1 (no NTO) 
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Figure 59: 95% CI for mean % of 56-B S2 packets dropped in Scenario 1 (no NTO) 
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Figure 60: 95% CI for mean % of 64-B S2 packets dropped in Scenario 1 (no NTO) 
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Appendix J. Plots of ∆ 

The following plots illustrate the variation of ∆ across ten polymorphisms for all 

test cases run. In each plot, the panels labeled 0 – 29 show the results from the thirty 

randomly generated input files. Each plot is titled with the name of the test case, where 

the first number indicates the number of nodes, the second number indicates the number 

of commodities, and the third number indicates the number of interface types. The values 

on the horizontal axes are for polymorphism number. The first solution is polymorphism 

0 and has no measured difference, thus it is not plotted. The next nine polymorphisms 

each have the difference ∆ measured from the previous polymorphism. The values on the 

vertical axes show the magnitude of this measured difference. Non-zero values for ∆ 

designate that a polymorphism is indeed different, and larger values indicate a larger 

difference. 

Since the set of possible edges is restricted to 25% incidence, there are a few 

cases where there are not many options for polymorphism, especially in the cases for five 

nodes. As a result, for these cases, polymorphisms oscillate among a few solutions. This 

behavior is reflected in some of these plots as periodicity. However, it must be noted that 

periodicity in these graphs does not imply oscillation between polymorphisms. It is 

possible to contrive scenarios where ∆ fluctuates among a set of fixed values, but every 

polymorphism is distinct. 
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5N1C1I 

5N2C1I 

5N3C1I 

Figure 61: Plots of ∆ by polymorphism for 5N1C1I, 5N2C1I, and 5N3C1I 
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5N1C2I 

5N2C2I 

5N3C2I 

Figure 62: Plots of ∆ by polymorphism for 5N1C2I, 5N2C2I, and 5N3C2I 
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5N1C3I 

5N2C3I 

5N3C3I 

Figure 63: Plots of ∆ by polymorphism for 5N1C3I, 5N2C3I, and 5N3C3I 
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5N1C4I 

5N2C4I 

5N3C4I 

Figure 64: Plots of ∆ by polymorphism for 5N1C4I, 5N2C4I, and 5N3C4I 
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10N1C1I 

10N2C1I 

10N3C1I 

Figure 65: Plots of ∆ by polymorphism for 10N1C1I, 10N2C1I, and 10N3C1I 
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10N1C2I 

10N2C2I 

10N3C2I 

Figure 66: Plots of ∆ by polymorphism for 10N1C2I, 10N2C2I, and 10N3C2I 
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10N1C3I 

10N2C3I 

10N3C3I 

Figure 67: Plots of ∆ by polymorphism for 10N1C3I, 10N2C3I, and 10N3C3I 
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Figure 68: Plots of ∆ by polymorphism for 10N1C4I, 10N2C4I, and 10N3C4I 
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Figure 69: Plots of ∆ by polymorphism for 15N1C1I, 15N2C1I, and 15N3C1I 
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15N1C2I 
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Figure 70: Plots of ∆ by polymorphism for 15N1C2I, 15N2C2I, and 15N3C2I 
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Figure 71: Plots of ∆ by polymorphism for 15N1C3I, 15N2C3I, and 15N3C3I 
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Figure 72: Plots of ∆ by polymorphism for 15N1C4I, 15N2C4I, and 15N3C4I 
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Figure 73: Plots of ∆ by polymorphism for 20N1C1I, 20N2C1I, and 20N3C1I 
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Figure 74: Plots of ∆ by polymorphism for 20N1C2I, 20N2C2I, and 20N3C2I 

0.15
0.10
0.05

1050 1050 1050

0.15
0.10
0.05

0.15
0.10
0.05

0.15
0.10
0.05

1050

0.15
0.10
0.05

1050 1050

0

Iteration

∆

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

0.15
0.10
0.05

1050 1050 1050

0.15
0.10
0.05

0.15
0.10
0.05

0.15
0.10
0.05

1050

0.15
0.10
0.05

1050 1050

0

Iteration

∆

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

0.15
0.10
0.05

1050 1050 1050

0.15
0.10
0.05

0.15
0.10
0.05

0.15
0.10
0.05

1050

0.15
0.10
0.05

1050 1050

0

Iteration

∆

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29



 

200 
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Figure 75: Plots of ∆ by polymorphism for 20N1C3I, 20N2C3I, and 20N3C3I 
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Figure 76: Plots of ∆ by polymorphism for 20N1C4I, 20N2C4I, and 20N3C4I 
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